Notebook No. 2 ### A PROPOSED REVISION #### IN THE ### STRUCTURE OF LOGLAN WORDS # Incorporating the Results of Taste Tests 4 & 5 #### CONTENTS | A New Morphological System | Pages | 1-29 | |--|-------|---------| | Affix Assignment Tables | | 30-36 | | Affixes by Their (Old) Primitives | | 37 - 42 | | New Primitive Lookup | | 43-44 | | Affix Usage & Primitive Power | | 45-62 | | Remade, Corrected and Added Primitives | | 63-80 | | The Remade L4 Complexes | | 81-180 | | | | | Copyright (C) 1982 by The Loglan Institute, Inc. 2261 Soledad Rancho Road San Diego, California 92109 U.S.A | | fa | | |--|----|---| * | | | | ŀ | #### FOREWORD This Notebook is intended to allow my fellow loglanists to assess the new morphological system in its entirety and to allow consensuses to develop as to how the details should perhaps be changed before adoption by The Institute. Being a notebook, it may be updated from time to time as errors are corrected, proofs found, algorithms perfected, primitives remade, affixes reassigned, or recommended pronunciation patterns changed. So-updated, it can then become the workbook of those who undertake the extensive revision and expansion of the next edition of our dictionaries. Many have contributed to this four-year project. Thanks are due Anthony S. Lovatt for his early insight into how the phonotactics of the 1975 language had been over-designed (TL1:183-4); to John Parks-Clifford for his analysis of Lovatt's proposal in that same issue (TL1:185-7), for his early statement of the case for H (TL1:327-9), and for his later formulation of the (CCV)ⁿ strategy of affix-assignment (TL3:273-6); to Charles J. Barton for his study of the comparative phonology of H (TL2:203-5); to Scott Layson for his clarification of the measurement-word problem (TL3:70-5); and to Jeffrey R. Brown for arguing the case for "long primitives" (TL3:120-2). Robert A. McIvor has my personal gratitude for his unstinted labor in helping me prepare, on his computer, the lengthy stimulus materials for all of our "taste tests" and for doing the first analyses of TT1-3 (TL5:111-24). My own papers in TL3:23-46, 196-200, 319-20, and TL4:5-15 complete, I think, the list of major background reading on what came to be known as GMR ("The Great Morphological Revision"). But had there not been a community of loglanists available to me as experimental subjects throughout the long period of my GMR research the system simply could not have been properly engineered...in fact, it would not even have emerged. Formal studies, while often ground-breaking and too often apparently conclusive, are simply not adequate for confronting the bristling domain of morphological fact. If there is any truth in these pages about word-goodness and -intelligibility it comes from the patient responses of those loglanists to my seemingly endless barrage of questions. Finally, I wish especially to thank Anita & John Lees, Jannaruth & Robert Jenner, and Julia & Edward Prentice for their massive response to TT4. About half the data in its tables—and so, about half of what we know about the consonant-joint—comes from these six willing people. J. C. B. San Diego 27 August 1982 The introductory text is divided into 15 major sections as follows: | 1. | A preview of the New Affix System | Page 1 | |-----|--|--------| | 2. | How to Use this Notebook | 1 | | 3. | GMR: Its History and Purposes | 1 | | 4. | A View from the Outside (with a Designer's Footnote) | 2 | | 5. | A Glimpse of "The Word-Maker's Manual" | 8 | | 6. | The Series of Trial Affix-Sets | 10 | | 7. | Taste Test #1: A Comparison of Two Strategies | 12 | | 8. | Taste Test #2: Intelligibility of Some Trial Words | 12 | | 9. | Taste Test #3: Preferred Pronunciation of Vowel-Pairs | 12 | | 10. | Taste Test #4: The Intelligibility of Consonant Joints | 13 | | 11. | Taste Test #5: Preferred Sequences in Complex | | | | Predicates and Tuning the D-Set | 20 | | 12. | 4-Letter vs. 5-Letter Non-Final Affixes | 26 | | 13. | The Allomorphs of Hyphen R | 27 | | 14. | Consonant Buffering | 28 | | 15. | What You Can Do | 29 | ## A NEW MORPHOLOGICAL SYSTEM by James Cooke Brown Copyright (C) 1982 by The Loglan Institute, Inc. - 1. A Preview of the New Affix System: Some readers will want to know right at the top what the new affix system, especially, looks like. So let me satisfy that curiosity by saying (1) the D-Set with its CVVs and CVCs, its reduced number of "unnatural" CCVs, and its occasional local polymorphism won hands down; so D was the set chosen to be tuned; (2) the hyphenation system chosen was Hyphen R with 4-letter affixes in non-final positions; (3) final coverage by the tuned D-set was 95% vs. the 97% coverage by undecipherable affixes found in L4; and (4) the average "tastiness" of the reduced complexes remade with the tuned D-Set was 52 for 2-termers, which is the score earned by words like dundru (a CVC + an unnatural CCV), and 78 for 3-termers, which is the score of words like durnortoi. I think you will agree that these are remarkably pleasant words to be at the balancing point of a distribution. Also, the variance is low. No awkward spread remained between the best and worst words once the affixes were tuned. - 2. How to Use This Notebook: You may either read this introductory text straightaway, and then settle down to a study of the listings. Or you may wish to examine the listings now, coming back to the relevant text when questions arise. Thus, you might wish to start with the affixes themselves. If you do, start with the Power Listing. This tells you more about the affixes and how they got that way than any other listing. You may also use the Affix Assignment Tables whenever you wish to look one up or study competition between them. To find out what a new-looking primitive used to be, go to the New Primitives list. To find out what old primitives were remade, and why, and what they have since become, go to the Remade Primitives listing. To see how the affixes work, go to the listing of Remade Complexes at the end of the Notebook. Questions generated by the listings will bring you back to this Introduction. You can re-enter it anywhere. All its integrally-numbered sections have been written to stand alone. - 3. GMR: Its History and Purposes: The "Great Morphological Revision" -- later, "Revolution", as the plot thickened--was first undertaken in the Autumn of 1978 when it became apparent that the original system for making complex predicates was not working. CPXs were not being used with any appreciable frequency in conversation, either by me or my apprentices, and when a new one was used, it stopped the conversation absolutely while one or the other of us buried his nose in the dictionary we had always to keep handy for such adventuring. When CPXs were used in correspondence, looking them up consumed more than half the time at both ends. Any systematic effort to learn them was psychologically unrewarding. This contrasts strikingly with the primitives, which go very quickly into memory, and through efforts that are easily, even joyfully sustained. Finally, when the few indispensable CPXs, like sadja (now saa'dja), were learned, they were apparently learned as quasi-primitives. The difficulty seemed to be that (i) the L4 CPXs were not uniquely decipherable; and (ii) the reduced 2-termers, like sadja, were not recognizable as CPXs, so not even decipherment-by-guesswork could reliably begin. 70% of the L4 CPXs were of this cryptic kind. What we needed, surely, was an affix-system that would not only produce CPXs that were uniquely decipherable, but one that would make every CPX carry its jointed meaning on its surface, like a badge. Some other morphological tasks were soon included. As early as 1977 it had been decided (a) to include h in the language and (b) to "unpack" the primitive "packs", i.e., sets like the kanta/kante/.../kanto-set, whose members differed in only one minor sound. Also, we had had Anthony Lovatt's proposal before us since 1977 that the 1975 restrictions on both initial and medial, but especially the medial, consonant-pairs were "overdesigned": more constrained than they needed to be for intelligibility. This added (c) "Lovatt-loosening" to the work to be done. And then, in 1979, there was Jeffrey Brown's telling observation that Loglan's 5-letter primitive forms were not only Procrustean, but unacceptably so if local concepts represented by long words were ever to be gotten into the language. So, the task of (d) adding a commodious but resolvable set of "long primitive forms" to the language--for borrowing long words like 'asparagus' but also short ones like 'igloo'--also became part of GMR. Then, very recently (November 1981), the penultimate facet was carved onto the project. I began to (e) provide for the regular construction and pronunciation of "acronymic compounds", like chemical formulas. Finally, a spinoff from my solution to the consonant-intelligibility problem has now become another and, I sincerely hope, the final facet of the GMR project. This is (f) providing Loglan, which always had some consonant-clustering and may now have more (now that CPXs will be in more frequent use), with an option of "consonant buffering" suited to the needs of native speakers of languages (like Chinese, Japanese, and Italian) which tend to not to have consonant-clusters. The solution to this problem may be an unplanned benefit of the intelligibility studies, perhaps, but buffering is now a definite part of the new morphological system. That, then, is GMR: the design of a set of decipherable affixes for the remaking of complexes that will yield as high a coverage by short affixes of the words in the present dictionary as possible; the remaking of some primitives in the interests of
H-inclusion, others for primitive-unpacking, and still others for the tuning of the affix-set for maximum coverage and word-handsomeness; the design of a set of restrictions on consonant-clustering that will admit the largest possible number of intelligible combinations to the language; the installation of an optional feature for buffering consonant-clusters so that they may be sidestepped altogether when desired; the design of a set of borrowing-forms that will be as commodious as possible without encroaching on the word-space of the regular words of the language; and the design of a system of pronounceable and resolvable acronyms that will satisfy all the functions of acronyms in contemporary science. 4. A View from the Outside (with a Designer's Footnote): Let us imagine that the new morphological system presented in this Notebook is adopted. What would the language look and sound like in a few years' time? Would it then seem orders of magnitude more complex? To have lost its "stark simplicity" altogether? Let's look into this question. On the next few pages I'm going to describe the new morphology as if to newcomers...a description that might appear, for example, in the next edition of L1. Let us start with an addendum to Sec. 2.4, The Five Vowels. At the end of that section, I would add this caveat: There is a sixth vowel sound in Loglan, but it is not spelled with a vowel letter. So let's consider it in the next section on the consonants. The sixth sound is in fact a very short, neutral vowel that German linguists call "schwa". It occurs quite frequently in English and is the value of the 'a' in 'sofa', for example, or of the 'e' in unstressed 'the'. Surprisingly, in Loglan schwa is an allophone of a consonant, not a vowel. Then, in the next section (which will now, of course, be devoted to The Seventeen Consonants, now that there is h), I would add this brief explanation of the role of r, one value of which is schwa. These new paragraphs might well replace the last paragraph in Sec. 2.5, now unnecessary: One of the four vocalic consonants, namely ${\bf r}$, has a special role to play at the "joints" in certain kinds of words. At these joints ${\bf r}$ is used to separate two syllables which, for some good reason, should not come together. Sometimes that reason is that the syllables have distinct meanings which are to be joined together in a single notion but nevertheless kept visually and audibly distinct. For example, the Loglan word **mekrkiu** means 'eye-doctor'. Clearly, the two ${\bf k}$'s should not come together or that jointed meaning would be lost. So the inserted ${\bf r}$, taking on one of its two vocalic values, manages to preserve the two main syllables. It introduces a short, always unstressed burst of neutral sound that keeps the two ${\bf k}$'s apart but cannot be mistaken for an ordinary vowel. (As English-speakers, we would want to spell this sound with 'er', and transcribe me'krkiu into mock-English as 'mecker-cue', accent on the 'meck'.) In this position **r** is rather like a hyphen, but a hyphen which appeals not only to the eye but to the ear. Now unlike the five true vowels sounds of Loglan--which are clear, mouth-stretching sounds as in Spanish--a good deal of latitude is allowed in pronouncing this hyphenating vowel. Even so, it is always spelled 'r' no matter how it is pronounced. Speakers of most American dialects of English will usually prefer their own "vocalic r" for the audible hyphen, pronouncing it just as they do the '-er' in 'fatherhood', 'maternity' and 'bittersweet'. Native speakers of other English dialects, and of all those many languages in which a vocalic r does not occur, will no doubt use their own familiar schwa: that practically universal unstressed vowel whose main role in human languages seems to be easing the burden of consonant-clustering. And that, in fact, is exactly how the suffix 'er' is pronounced in nearly all dialects of British English and in German. Summing up, the consonant **r** has three allophones in Loglan. First, it has its usual consonantal value when initial ('red'), or when between a consonant and a vowel (as in 'tree'), or between two vowels ('era'). Second, whenever the **r**-sound is jammed between two consonants (as in **mekrkiu** or 'eternal'), or is initial and followed by a consonant (as in English 'irk' and 'Earl'), it may take on either of its two vocalic values: schwa, which is the 'a' in 'sofa' or the 'e' in unstressed 'the', or the vocalic **r** that is so common in American English and in some few other languages. So, as I trust the reader is a speaker of at least some dialect of English, the letter 'r' between consonants will look odd to your eye, but it will not sound odd to your ear. Your ear and tongue already know it. All you need to do is teach your eye to see the sound you know as 'er' in 'r', and your hand to drop that 'e'. Now, with this small adjustment to the phonology, let's move on to the morphology. Secs. 2.8-9 on little words are largely ok as written. But Sec. 2.10 on Predicate Words will have to be entirely redone. Here's a first draft: #### 2.10 Predicate Words Predicate words form the bulk of the vocabulary of any language and range in length from short, frequently used words, like English 'egg', 'run' and 'boy', to very long, seldom-used predicates like 'antidisestablishmentarianism'. In Loglan, too, one can string forms with separate meanings together and so express extremely complex ideas in single words. Words like 'infix' and 'understand' illustrate this process at its earliest level in English. 'Understandable' and 'infixive' go one step further; and so on. But let us first consider the forms of those Loglan words that express the kinds of concepts usually written indivisibly, such as 'egg', 'run' and 'boy'. One would expect such words to be short in Loglan, and they are; but not as short as the shortest predicate words in English. For Loglan is a much smaller language phonetically than English; and so it has fewer short words. Besides, nearly all the monosyllabic words of Loglan are heavily-worked structure words like English 'of' and 'the'. Words with meanings like these occur more frequently than even the most common predicate words, and so deserve to be the shortest words of any language. The indivisible predicates of Loglan are of two kinds. They are either words borrowed directly from some single natural language, like **iglu** is borrowed from Eskimo in both English and Loglan, or they are composite predicates built up of overlapping sound-sequences taken from as many of the eight target languages as possible, thus making them as recognizable as possible to the world. All the predicate words you have seen so far (except of course **iglu** and **mekrkiu**) are of this internationally-derived composite kind. Thus **junti**, **mrenu** and **botci** are all composite predicates. It is no accident that they are all five letters long. All the simple composite predicates of Loglan are constructed in one or another of just two five-letter forms: an arrangement that can be summarized as #### CV'C/CCV' + CV The internationally-derived predicates of Loglan are, as you would expect, the semantic building blocks of the language: its primitive notions. So every notion which is universal enough in human experience—as igloos are not—to have found expression in a simple word in nearly every human language is expressed by a composite predicate in Loglan. Thus knives, boys, eyes and healers are universal in human experience; so each has its own simple predicate in Loglan: najda, botci, menki and kicmu. (You can probably sense the international origins of all these words.) But perhaps eye—doctors and knife—boys are not. So these more complex notions are, as befits a logical language, expressed in Loglan by more complex words. Thus words like mekrkiu and najboi ("nazh—boy") arise. We will see how to build such words out of parts of primitive predicates in a moment. But neither are igloos, llamas, asparagus, chlorine or australopithecines. So in addition to its apparatus for building complex predicates out of simple ones, Loglan also has an apparatus for borrowing predicate words directly from single linguistic sources...in particular, from the languages of the people who do have igloos, llamas, asparagus, chlorine, or australopithecines. Most importantly, perhaps, the international vocabulary of science, in all its fullness, must be allowed to enter the language without significant distortion. Some distortion is inevitable. Every language distorts what it borrows. But let us see how distortion may be minimized in a neutral language. Some words we wish to borrow just happen to fit one of the two word-forms already assigned to composite predicates. The Swahili words simba for lions and dumbo for elephants clearly do; the virtually untranslatable Hindi word karma does; and 'chlorine' transforms with very little loss into clori. (Clori is pronounced 'shlaw-ree', of course. It is the spelling we will usually want to preserve in importing scientific words.) Similarly, the international word 'telephone/-fono' is neatly compacted as Loglan telfo. And what about telvi for 'television' and futbo for the international game that most people who play it spell 'futbol'? It would be foolish to deny these handsome words entrance into our neutral language on the grounds that they "look like" Loglan composite predicates. No problems are created by the fact that they are not. But Loglan has a second and much more flexible set of word-forms designed to accommodate more difficult borrowings. Like those of all Loglan word-classes, the forms of these borrowed words, too, are distinctive. The shortest of these "borrowing forms" are 4 letters long (iglu) and they go up through 7, 10 and beyond by increments of 3. In the language of mathematics, they are all 1 mod 3 letters long. Like all regular Loglan words (i.e., non-names), they
end in vowels. Also, like the composite primitives but unlike structure words of whatever length (which can have no adjacent consonants), all these borrowing forms must have at least one consonant-pair within their first four letters. That is a quite general sign, in fact, of a predicate word. Also like all predicates, borrowed predicates are all stressed on their penultimate syllables, that is, on the syllable next to the last. This is the commonest stress-pattern in Loglan. Predicates share it with many other sorts of words. Examples of borrowed predicates which have been slightly altered to fit these 1 mod 3 forms are spai ('spy', this one is phonemically identical to its original), e'lki ('elk'), either o'ksi or oksi'gne for 'oxygen', engli'ca (for 'English'; but please put the stress in the right place), arkni'da or rakni'da (for 'arachnid'), asparagu'sa ('asparagus'), krustei'cia ('crustacean'), australopi'tku ('Australopithecus'), and anglosakso'nia for 'Anglo-Saxon'. (I am marking stress here so that you will be able to pronounce these new words properly the first time you see them. Later, you will not need this help.) All these words are predicates despite the fact that some of them are capitalized in English and so seem to be names; and all have precise local definitions or established usages in science. And remarkably enough, despite what appears to be their uncontrolled variety, all but the spai-form words are described by a single formula: # $(CC/VCC/XVCC + (X)^n) + V'C(C)^m + V/vv$ In this formula, n and m give the number of instances of the marked elements. Their values are chosen to produce a length of 1 mod 3, and either or both may be zero. An X may be either a consonant or a vowel; so the middle portions of long words may be quite freely contrived. vv is either a diphthong (like ei or ao) or a pair of vowels capable of being pronounced monosyllabically (like ia or ui). The components in parentheses are optional except that if m = 0 (thus leaving a single consonant after the stressed vowel), then the first term (with its guaranteed consonant-pair) must be chosen. spai-type words have the simple formula CCvv, and so are always monosyllabic (like spai itself). It is an important restriction on both these formulas that any final vowel-pair be monosyllabic. For look what happens when one is not. Take *spea, for example, in which ea spans two syllables: /SPEa/. Then the phrase to spea, or two of whatever "speas" are, would come out /toSPEa/ and so be indistinguishable from the complex predicate tospe'a (made up of tos + pe'a). This is intolerable in Loglan. Among its other properties, Loglan is to be machine-intelligible. So no "I scream/ice-cream"-type problems are to be left lurking in the language. Thus, words of *spe'a-form are not allowed. There are some more restraints on word-borrowing in Chapter 6. Let us now consider the forms of complex predicates: the ones that are to be derived within the language from its own primitive predicates. We have seen three instances of these jointed words: me'krkiu with its audible hyphen, na'jboi which needs no hyphen, and the one we have just stumbled on by considering how 1 mod 3 forms should not be built, namely tospe'a. (I will continue to mark the stress in these words until sensing its location becomes automatic for you.) It is always the penultimate true vowel or monosyllabic vowel-pair in a predicate that receives the stress. Thus oi (pronounced 'oy') and iu (pronounced 'you') are monosyllabic; ea, we have seen, is not. So the stress slips to the right in /toSPEa/ and stays firmly left in /MEKrkiu/ and /NAJboi/. Note that hyphen r is not even counted in figuring stress. In fact, hyphen r isn't counted at all. It might as well not be there as far as the structure of these words is concerned. Now you will find neither na'jboi nor tospe'a in any dictionary. But that doesn't matter. We would know immediately what any speaker who used one of these words probably meant. naj is an affix (a combining form) that can come only from najda = 'knife'. boi is an affix that can come only from botci = 'boy'; tos comes from tosku = 'skull' and pe'a from penta which means 'a point' or 'something pointed'. Now you might not know exactly what the speaker has in mind by speaking of "knife-boys" and "skull-points", but you are now in a very good position to find out. Thus, complex predicates in Loglan, as in German, are semantically transparent. No German child needs to ask whether 'Handschuh' means those items of apparel that we call gloves. Of course it does. What else could a hand-shoe be? So it is in Loglan. Once you know the affixes which have been assigned to all the primitive predicates of the language--about 800 of them are currently assigned--you will be able to decipher at first sight every new complex word you will ever encounter. Take the 12-letter word rojmadse'smao. Such words will soon break up before your eyes...or in your ears, for that matter. Perhaps either your eye or ear has already told you that this one can only be the 4-term complex roj + mad + ses + mao. You have already guessed that all these glued-together words are 0 mod 3...not counting hyphens, of course. So you can chop their syllables off in 3-letter segments. The first such segment, roj, as you are now learning, comes from rodja, 'grow'; mad comes from madzo, which means '(to) make' or 'a maker'; ses comes from sensi, which means 'science'; and mao (which rhymes with 'cow') is yet another combining form of madzo. (Some primitives have two or more affixes, each useful in different contexts.) Now what on Earth could the speaker or writer mean by a "grow-make-science-maker"? Of course. An agronomist! What else could it mean? And se'smao, of course, must then be 'scientist'. Nearly all the metaphors behind Loglan complex predicates are of this transparent kind. So dictionaries are, in fact, of little use to Germans and loglanists once they "know their affixes". By the way, although a primitive may have several affixes, every Loglan affix is assigned to just one primitive. So once you have learned that mao (still 'cow') is a contraction of madzo, you are done with mao. It will always mean madzo. So there is no such thing as an "ambiguous affix" in Loglan. Does 'inflammable' mean 'capable of flaming in'? Or 'not capable of flaming'? Does 'infix' mean 'fixed in'? Or 'not fixed'? It means 'not flexible' in 'inflexible'! Such questions cannot even arise in Loglan. We have uncovered three kinds of affixes: the CVC-forms of which mad, ses, mek, tos, naj and roj are instances; the monosyllabic Cvv-forms of which mao, kiu and boi are instances; and the disyllabic CVV-forms of which pe'a is still our only instance. There is a fourth contraction, and then four longer forms we must consider. Take the predicate mrenu. The obvious choice of a 3-letter contraction for this word is mre. Another and very frequently used CCV-form is cli from clika, which means 'like'. So mre'cli must mean 'man-like' or 'manly'. Many American Indian languages have a word that means 'man-woman'. We can convey this local metaphor very neatly in Loglan with mre'fua, in which fua comes from the word for 'woman', which is fumna. (Pronounce fua like the "fwa" of French 'foi', not as "foo-ah".) With the CCV-form we complete the list of short affixes, or contractions. Now nearly all Loglan primitive predicates have contractions. But some do not; and some that do, may not have the right kind of contraction for some spot in a complex. When this happens, an "unreduced", or long affix, must be used. For example, mubre ('wood' or 'wooden') has no contraction. So 'lumber', or 'building-wood', is bacmu'bre in Loglan; and in this word the short affix, bac, comes from the primitive balci, '(to) build'. (bal is a contraction of something else, namely balpi, 'balance'.) Similarly, banko ('bank') has no contraction. A banker is a "bank-doer" in Loglan. So the word is ba'nkrdru. We needed that hyphen to "glue" the word together. Note that the final -o of banko has simply been replaced by the audible hyphen, a much shorter sound. dru, of course, comes--rather irregularly, it turns out--from the word for 'do', which is durzo. It is because durzo is such a frequent and mobile component of complex predicates that it has been given this irregularly-derived but powerful CCV affix. CCV is the only affix-form that will literally "go anywhere". We now have all eight of the forms that can be strung together to make the complex predicates of Loglan. They are CCV, CVC, CVV and Cvv, which are the four contractions, and CVCCr, CCVCr and the two 5-letter primitive forms themselves, CV'CCV and CCV'CV, which are the four long forms. Clearly, the 5-letter forms may only be final; and the 4-letter forms (with their accompanying r's) may only be non-final. The CVC-contraction, too, is never final. The monosyllabic Cvv-form is a little freer. It may go anywhere in a complex except at the head of 3-term or longer complexes. There it would come unstuck. For example, *maomre'fua wouldn't be a good word because the first syllable would sound like a separate word to the listener. Inevitably he or she would hear the intended word as a pair of words, Mao mre'fua, which happens to mean 'Mu is a manwoman'. This is the "I scream/icecream" problem again. So Cvv's are not permitted in such positions. However, a Cvv works perfectly well at the head of a 2-term complex, as in boi'mre. In that word, boi can't come unstuck. What would be left if you took boi- away is -mre; and *mre is not a word in Loglan. The disyllabic CVV-forms like **pe'a** are the most restricted of the four types of contraction. They may used as final terms in 2-term complexes provided the first term is either a CCV or a CVC (**mrepe'a** or the **tospe'a** we have already seen); or they may either be final or penultimate in longer complexes (**mrefuape'a** or **mrepea'cli**) but never earlier than that. Also,
two CVVs may not be adjacent in a word. I have already mentioned that CCV is the only combining form that is free to go anywhere. So a word may be composed entirely of CCV-type contractions. **Mrecli'dru** is such a word. (Can you decipher it?) There is thus an extraordinary variety of complex predicates in Loglan, and the formula describing all of them is naturally quite complex. It is given in Chapter 6, where complex-word making is discussed in more detail. Summing up, there are the composite primitives of Loglan, which are either of mre'nu- or fu'mna-form. Some borrowed words like clo'ri and si'mba also have these 5-letter forms. Then there are the 1 mod 3 borrowings ranging from spai and i'glu at the short end to australopi'tku at the other. And finally there are the complex predicates of Loglan. These are 0 mod 3 (not counting any hyphens) whenever they are in fully reduced form. They range from 6-letter words like na'jboi and mre'cli to words of any length whatever depending on what terms have been left unreduced. Thus the form of 'agronomist' in which all terms are left unreduced is the 20-letter monster rodjrmadzrsensrma'dzo. It is difficult to imagine circumstances in which anyone would use this word. On the other hand, someone might. So it is good to know how to break it apart. If you think of the r's as real hyphens, it breaks apart very easily: rodj-madz-sens-madzo. Before leaving the predicate forms of Loglan, it should be pointed out that no one is ever obliged to use reduced complexes. Words composed entirely of contractions are often neat and quick, and with knowing listeners in conditions of low noise, they are usually the best choice. But if the audience—say a learner—is unfamiliar with the concept, or if there is a good deal of noise, then a longer version of the same word is likely to be a better choice. Consider the following sequence: sa'npa dja'no sanprdja'no sa'nprdja saa'dja All these expressions mean the same thing. The first is the original metaphor, "sign-know", say at the moment of its introduction into the language by an innovative speaker. (That happened twenty years ago). The second expression is a single word composed of two long affixes with just one stress, and is definitely shorter. Later, with increasing use of the concept, the third expression might become most common. It has now become /SANprdja/, an even swifter word. Finally, as the concept in question (which in Loglan means 'understand', as in '(to) understand the meaning of some sign (not a person)') became very widely used (as in fact it did, about five years ago), its final form would be reached: /saADja/. And that is as short as this predicate is going to get, no matter how frequently it is used. But this same developmental sequence is available to be used by contemporary speakers for quite different purposes. In different rhetorical circumstances, say, or in noisy conditions, a speaker might switch from saa'dja to sa'nprdja, or back to sanprdja'no, or even go back to the metaphor sa'npa dja'no itself. To give three examples, he or she might be (i) giving a formal lecture on "understanding" to university students, (ii) teaching the language to a pupil who was just learning this concept, or (iii) shouting in a storm. The point is that, in Loglan, the speaker is free to do any of these things. All these distinct versions of the "same word" coexist for him in the language side by side, so to speak. Anyone who understands any of them will eventually understand them all. Thus all Loglan complex predicates are polymorphic, a feature of the language perhaps especially well-suited to second-language learning by adults, or to a language which is meant to grow. Well; what is your opinion? Is the morphology of the new language going to seem "orders of magnitude more complicated" to the incoming loglanist circa 1985? The trunk of the morphological tree is still the same: the primitive predicates. And these are by far the most numerous words encountered by a newcomer. As for the farther and more farreaching branches of the word-tree, is it really going to bother anyone to occasionally encounter words like iglu in Loglan? Or australopitku? Does it bother you in English? No sophisticated conversation, no trip to the human zoo, is possible without them. And given the knowledge that in these encounters you are standing in the morphological doorway through which the whole of science might one day enter Loglan, I rather imagine that you will come to welcome these borrowings. They are clear signs of the worldliness and capaciousness of our language. And what about the complex predicates? Are these decipherable ones--with their little gleaming beads of constant meaning, strung together in the plainest of ways, unstringable at a moment's notice--really more complicated than those baffling ones we used to live with (and which nobody liked to use)? Which no matter how you pushed and pulled at them simply would not come apart? Never reliably, anyway. You could never be sure that you were carving those pieces of reality at the joints. I think not. I think the complex predicates of 1975 Loglan were not very simple at all. Just because we didn't talk about them didn't make them simple. If I had written about them--tried to explain how all those little bits and pieces went together, and why one piece meant one thing one time and another thing another--it would have taken a notebook twice this size. And then made no sense. Nope; we've now got a simpler language, Rorpern. Just because the engineering was intricate doesn't make the object that it led to intricate. The hull of a boat is simple. But the equations that describe the balancing act between its many necessary virtues are most wonderfully complex. Be forewarned. The design-studies behind these simple affixes are similarly complex. - 5. A Glimpse of "The Word-Maker's Manual": This is only a glimpse because there isn't room for more. Besides, Bob McIvor's final testing of the resolution algorithm, which will be the foundation of that manual, has had to wait for the completion of the rest of GMR. His algorithm will be published separately, probably in TL. Nevertheless, I can summarize what I have learned from making the three sorts of new words: - 5.1 Making Complex Predicates: There is only one problematic sequence that I know of, and it is a generalization of the old *Tosmabru Case. Words of form (CVC)n + CV'ccV, n greater than 0, in which cc represents an "active initial", i.e., one of the 36 CCs used in making CCV-affixes; see CCV Assignment Table. Every word of this form must be checked to make sure that not all its C/C joints are "bridged" by active initials. If all are, it will break up as a CV # $(ccV)^{n-1}$ + ccV'ccV, e.g., as to sma'bru, and is disallowed. If any joint is not bridged, it's ok. So it is often possible and always sufficient to replace one of the CVCs in such a form with an allomorph that will destroy one of its bridges. Suppose we wanted to make tosku matma setci ('skull-mother-set', no doubt a kind of secret society common in the primitive fastnesses of Loglandia) and had written *tosmatsetci as a first try. Noticing that SM, TS and TC are all bridges, causing the sequence to break into to smatsetci ('two smoke-error-eaters'!), we might replace mat with mam, also 'mother', and write tosmamsetci, which works fine. (M/S in *smamsetci is not bridged.) Of course, a more obvious solution (since sei exists) would have been to get rid of the CV'ccV-term, with its fragile center, and to have offered the Loglandic anthropologists tosmatsei (/tosMATsei/) in the first place. It might be thought that CPXs such tosma'tsei, tosmao'sei and tosmaa'sei--in short, any 0 mod 3 form with initial CVCC- and final -Cvv, with the first CC an active initial--would break up into phrases like to sma'tsei, which certainly look like 1 mod 3 type borrowed predicates preceded by CV operators. Indeed they would break up in exactly such ways if such forms were permitted in the borrowing lineage. But all 1 mod 3 forms which might abridge the right of CPXs to occupy their own word-space have been quite deliberately excluded from the borrowings; see Sec. B below. One quite surprising outcome of my resolution-work with CPXs is that *sea'dja won't work but saa'dja will. CVV'+CCV words won't work unless the two adjacent Vs are identical because they break up immediately into CV # VCCV phrases if they're not. Thus se adja, or 'seven "adjas" (whatever they are), is how /seADja/ will be understood no matter what the intent of the word-maker. But the old La Ailin Rule requiring a mitigating pause--normally a glottal stop--between the a's when the name operator precedes an a-initial name, thus /la.aiLIN/, is most reasonably extended to protect the new VCCV-form words from the same kind of adventitious vowel-doubling. Thus, it is most natural when saying sa adja ('almost all adjas') to stop glottally between the two a's, and say /sa.ADja/. So saa'dja spoken without such a pause comes out laughing. It must be a complex. So I've simply proscribed CVV'CCV-forms without doubled V's, and allowed the ones with doubles through. Cvv'CCV-forms like tue'dji work just fine, of course. This is one of the reasons why the Cvv's are so much more valuable in the affix-set than the CVVs. **5.2** Making Borrowed Predicates: As explained in TL3/4, pp.319-20, the 1 mod 3 group of forms is a residual class. That is, it is to be contrived in such a way as to include as a legitimate borrowing any V/vv-final, 1 mod 3 sequence with an early CC that is not also (1) a possible composite plus a preceding CV, or (2) a possible complex either (2a) plus a preceding V or (2b) less its initial CV. *tobrudi illustrates the first exclusion, CV + ccV'CV, *osmacli the second, V + CPX, and *smatsei, which we may write CPX - CV, the third. (That is, *smatsei, as we saw in Sec. 5.1, above, is the CPX tosmatsei less its initial CV.) But now
please note that oksigne, which I listed as an alternative to oksi for Oxygen in Sec. 4—and which certainly has the external form of *osmacli—is an acceptable borrowing. It will not break up as o *ksigne because *ksigne is not an acceptable CPX. So, clearly, if we wish to make our residual class as large as possible, we must take into account the "un-bridged" consonant-pairs within a borrowing that might save it from either breaking up, or coalescing, into something else. For borrowings of length 7, all the residual forms were once worked out, but without taking into account the freeing effect of "non-bridges". Thus, oksigne and raknida were then excluded. Here is the new set, almost certainly incomplete. In the new formulas 'C-C' stands for a non-bridge, i.e., a CC that is not one of the 36 active initials. A 'CC' may or may not be an active initial; a 'cc' is an active initial; a 'VV' may be a vv, and a 'vv', of course must be: Notice that *sma'tsei and *osma'cli are not among these strings and oksi'gne and rakni'da are. Oksigne is String #3, as so would be oksi'gia and oksi'ste. Rakni'da is an instance of String #2, as is iodnina. Excluding them presupposes that primitives like *knida and *dnina could exist, and so unnecessarily reduces the borrowing space. Similarly, oski'gne (with an sk) is String #1, in which the first CC is bridged but the second isn't. A late non-bridge is just as good as an early one to protect a borrowing. Thus, oski'gne is a good borrowing precisely because *skigne is not a good complex. I would welcome the complete residual set for the 7's, plus a proof that it is complete, from any loglanist willing to take on this tricky problem. For the 10+'s, it is only necessary that words made to the formula given on p.5 be checked for the 4 following conditions: (1) Is the "ending", i.e., the post-stress sequence starting with the first C after the stressed vowel, of length 3 or 4? In particular, is it any of the forms CCV, Cvv, CCCV or CCvv? (2) Does it start with VC? If both of the first two conditions are met, then blot out the initial vowel and look at the rest of the word. (3) Is it a CPX? (4) Could it be made a CPX by appending any V-final sequence to its front? If it is or could be, then that particular borrowing is not allowed. (In a 10+ word it is usually easy to make some changes in the middle sequences that will make it allowable.) Note that if either of the first 2 tests fail, the last 2 will also; so the word is allowable. The set of 1 mod 3 words of length 10 or greater that pass through this screen may not be a residual class in the strict sense that they include all the sequences that meet the other requirements of a predicate; but they are an immense number of words. Bob McIvor's word-checking algorithm, when it is complete, should give us criteria for a larger, if not yet actually complete, set of 1 mod 3 borrowings. However, the word-maker, when contriving a long borrowing, will often discover a sequence that will actually meet the functional test of a good borrowing even though no published formula allows it. Please communicate all such discoveries to The Institute. 5.3 Making Acronymic Compounds: The acronyms of Loglan are not only what acronyms usually are, that is strings of (usually) capital letters written together and surrounded by spaces, which exhibit in order the "important" letters, often initials, of some much longer word or phrase; they are also compound little words. They thus fall in the same morphological class as compound tense-operators or number-words. Thus AAA is the acronym; AcAcA (pronounced /aCAca/) is the acronymic compound. Note that stress is penultimate. The writing convention, of course, is to capitalize in the compound the same letters capitalized in the acronym. -c- is the acronymic hyphen (not -z-, as reported in the McG Notebook). Its function is both to incorporate in the compound, and to render more swiftly pronounceable, the vowel-singlets (usually) used to represent the vowel-letters in the acronym. Thus, /eh-eh-EH/, in which the vowel syllables are uninsulated from each other and also diphthongs, takes more time to say than /aCAca/; try it. Any consonant-letters in an acronym are spoken as full letter-variables; these then appear as full CVV-syllables in the compound. Thus CaiCaiCai is CCC written out; and /caiCAIcai/ is the pronunciation of both expressions. The listener's default assumption is that any vowel-singlets in an acronymic word are Latin capital vowel-letters in the acronym...except in chemical symbols, in which any singlet representing a sutori letter in the acronym is assumed to be in Latin lower-case. Thus CaiIcA is the phonemic form of CIA, and both are pronounced /caiICa/. (Alternatively, /caiCICa/, should it be thought we need that second hyphen.) But if the listener knows that Acu, which he hears as /ACu/, is a chemical symbol--the symbol for Aurum (gold)--then he knows that he must write it acronymically as Au. Single-letter "acronyms"--which are not acronyms at all but letter-variables--such as often occur in chemistry, e.g., N and O, are spoken aloud as full letter-variables, e.g., Nai and Oma (/OMa/). And DNA, of course, is either DaiNaiA or DaiNaicA with a hyphen. (But I can hear the difference between /daiNAIa/ and Dai na ia as /daiNAia/ without that hyphen; can't you?) The use of -c- as the vowel-hyphen in acronyms has only one known constraint. If a phrase to be rendered as an acronym requires two initial vowel-letters of which the first is 'I'--suppose the acronym required were a transliteration of 'YACC' as IACC--then the normally-constructed compound doesn't work. For *IcACaiCai (/icaCAIcai/) breaks up as Ica CaiCai, which means 'Or CC'. In such cases, the first of the two vowels must be spoken as a letter-word in pronouncing the acronym. Thus 'YACC' in Loglan comes out ImacACaiCai, pronounced /imacaCAIcai/...a bit longer, for once, than /eye-eh-see-SEE/. But apart from the i- in icV-form connectives, no other single-vowel word precedes a cV-syllable in grammatical Loglan. (Sheks may not, of course, grammatically follow eks.) So OACC, for example, works out just fine: /ocaCAIcai/, which again is considerably shorter in speech than the English /oh-eh-see-SEE/. Remarkably enough, Irei-type words--Ir being the symbol for Iridium--are held quite harmless. It is a generalization of an old stress-rule that handles this case, namely that (now) no single LW, nor final syllable of a compound LW, may be stressed as a pauseless antecedent of any other polysyllabic word (not just a predicate). Whence /IRei/ cannot now be heard as I rei which, if pauseless, must be spoken either /irei/ or /iREI/. If the speaker does wish to emphasize the connective, he must pause after doing so...quite a natural thing to do. Thus I rei groda sei with stressed I comes out /I.reiGROdasei/. This is, in fact, exactly how we say it in English: 'And (pause) r is bigger than s'. Acronyms and acronymic words are given a thorough work-out in Part 5 of the Remade Primitives listing. 6. The Series of Trial Affix-Sets: The major movement of the GMR research over the last four years is described in the way the trial affix-sets, and the strategies for making them, have changed. Seven sets have been made, not counting the tuned version of Set D. Let us call the first 3 sets (then unlabeled) Sets 1, 2 and 3. The last four were the labeled Sets A, B, C and D. A and B were the pair compared in Taste Test #1; C and D in Taste Test #5. Sets 1 and 2 were partial sets made for the first of the GMR studies: the 1978 study of coverage and remaking-cost. Set 1 was to provide CV-form final affixes for the 85 prims that were most productive in this position; and filling the CV-table in this way required that many of those primitives be (provisionally) remade. Set 1 also supplied either a CCV affix or a pair of complementary CVCs to each of an overlapping list of prims that were most deserving in non-final positions. Set 1 preserved, therefore, the (non-)virtue of 2 mod 3. Set 2 introduced the CVV-form, and used both these and CCVs in final positions. It provided complementary CVC-pairs as well as CCVs for non-final use. Set 2 thus introduced the 0 mod 3 concept which assured that all CPXs would be recognizable as such, and was thus the parent of all future sets. Quite apart from its resolution of the recognition problem, the coverage vs. remaking figures also favored Set 2. Set 1 would have required more than twice as many remade prims as Set 2. It was also probable that, in the end, Set 2 would also have had greater coverage. That point had not been reached, however, when the study was terminated at the 75% coverage-mark for both sets. It was clear that both would reach the 90's. Trial Set 3 was built to explore an orthogonal strategy, namely that all short affixes be CCVs. The complex word would then have the attractively simple formula $(CCV)^n$...if all its terms were covered. But this condition was not frequently to be met. Investigation showed that a term-coverage figure in the low 80's could not be exceeded even if some 30 of the most powerful (and handsome) primitives in the language were remade: primitives like matma, fumna, ganta and takna which yield no CCV affix with a permissible initial no matter how leniently permissibility is defined or how much reordering of phonemes is allowed. Unless those 30 "impossibles" were remade, and in most cases, radically, coverage could not exceed the middle 60's. Thus, on the grounds of coverage alone the $(CVV)^n$ -strategy could be rejected as illusory. At 65% term-coverage, most complexes would not be $(CCV)^n$; and at 80% scarcely more than half would answer this description. But the decisive consideration was the huge loss in recognizability, not to say handsomeness, in the primitives themselves if remade to get the higher coverage. Thus, in the course of filling its CCV table, (CCV)ⁿ would have forced such
words as zgaha upon us, which was ganta remade to fill the zga-slot in that table. Zgaha suffers a large R-loss; and is certainly not very pleasant either to look at or say. Yet it was the best composite word for 'high' that would fill any open slot in the CCV-table by the time ganta's turn on the power list came around. Ganta was not atypical. In fact nearly all the 30 impossibles—which are in the main, like ganta, handsome, high-R words—would have had to be made less recognizable in this unnatural way. Indeed, the consonant-combinations that would thus be installed in some of the most frequently-used words in the language would be precisely those that do not occur with any frequency in natural languages. That's what happens when you exhaust a table of possibilities. So the new prims would not only have been unrecognizable and, collectively, would not have covered much, they would also have been strange. So the search for decipherability continued along the path of polymorphic affix sets. Both Sets A and B were of this kind, using all 3 types of affixes. They were also the first complete affix sets, and so the first for which coverage could actually be measured. Set A had 93% coverage, Set B 92%; both quite tolerable but not yet maximal. Set A retained all of the CCVs of Set 3, however unnatural (e.g., sfa from setfa), except those which were to be achieved by the remaking of the "impossibles". In short, A maximized the number and power of its CCV-affixes, but without bizarreness, by using CVCs and CVVs only where no CCV could be more powerfully used. Set B in contrast, abandoned a good many but not all of the unnatural CCVs that had been created for Set 3, using only naturals or "good unnaturals" (e.g., fra from farfu). It also used complementary pairs of CVCs quite lavishly (e.g., mat/mam), often augmenting even these with a CVV (maa, in this case). For less powerful prims it used single affixes: a CVV, a frontal CVC, or some new medial one (rel from trelu). TT1 clearly showed the B words to be more tasty than the A words but without pinpointing the cause; see the discussion of the TT1 results in Sec. 7 below. But an AB vector had been established by the difference in their strategies. Supplemented by the more specific insights gained from TT1, that vector seemed worth extending in the construction of Set D. But there were other conclusions that could be drawn from TT1. Bob McIvor embodied some of these in Set C: a set made entirely without CVV-form affixes but with large numbers of unnatural CCVs, and even some "bad unnaturals" (dzo from madzo). This was a retrograde step but a useful one, in that it allowed the detailed investigation of the naturalness issue in TT5. Set C also had no local polymorphism, assigning just one affix to each primitive that had any. The predicted coverage of Set C without CVV affixes was, of course, very low, although not quite so low as Set 3...about 70%, it turned out. In making the D-Set I pursued a diametrically opposite strategy. I reduced the number of even the "good unnatural" CCVs from Set B, replacing them with CVC/CVV couples when deserved. I had no tradeoff figures then with which to calculate the costs and benefits of these replacements, and it turned out later that I went a mite too far. (So in tuning, some good unnaturals were invited back.) I also used CVVs very freely, giving the monosyllabic ones more work to do whenever possible. I also cut down significantly on the number of CVC-pairs, having learned from TT1 how valuable these forms were, and so to spend them thriftily. Finally, I had the new 4-letter "long affixes" to investigate, and these got folded into the words made with the D-Set affixes. C, of course, used the old 5-letter-plus-hyphen plan that had been used in L4. As TT5 exhibits in abundant detail, the sharp differences between the C and D strategies of affix-assignment produced a far more sensitive experiment than could have been achieved with stimulus words more similarly contrived. 7. Taste Test #1: A Comparison of Two Strategies of Affix-Assignment: This was the "snippet test" sent out with the Supplement in November 1979 after an earlier and more ambitious effort to compare words made with A- and B-Set affixes had failed. The version of TT1 that worked was to supply each TL-subscriber with a one-inch strip, containing about 20 trial words, half made with each affix set, cut from the list of about 4000 trial complexes computer-generated by Bob McIvor; see Sec. 6 for a description of how the A and B Sets differed. Eighty-three loglanists responded, their ratings covering 1799 words, about 900 from each set. The results of TT1 were both puzzling and provocative. I will list only the most fruitful ones here. (1) B-words, with their fewer "unnatural" CCVs and more numerous CVVs, were definitely preferred over words made with the older A-Set (P about .0002). This suggested we were going in the right direction. But whether the improvement was due to the increase in the number of CVV forms or to the diminution in the number of unnatural CCVs-or to something else-was not clear. (2) The CVC-type affixes were definitely most "valuable". They were better on the left of any joint than either CCVs (P about .01) or CVVs (P about .001), and probably also on the right in 3-termers, but this was less clear (P about .10). (3) CCVs were slightly preferred over CVVs in both medial and final positions but not significantly (P greater than .10). (4) Three-termers with two CVVs (medial and final) were definitely worse than ones with 1 or no CVVs (P about .001). (5) Half-reduced 2-termers with the long affix last (menkatma-type words) were greatly preferred over the other order (kaplirdru; P about .0001) and, indeed, over all other types of words taken together (P also about .0001). On the basis of these in some ways puzzling results I decided to proceed along the AB strategy vector; as is explained in Sec. 6. But, clearly, a more precise componential analysis of the interactions of the affix forms with one another was going to be needed. - 8. Taste Test #2: Intelligibility of Some Trial Words: This was an effort to investigate intelligibility by circulating a cassette on which 5 readers read a list of 90 "difficult words". The stimulus words had been selected from the trial words used in TT1 to be rich in intelligibility problems. They certainly were. However, structure was not varied systematically among them and it didn't work. There are only two results worth mentioning, one dolefully negative: (1) It was abundantly clear that we had a very large problem with consonant-clustering, especially at the C/CC-joint. The intelligibility of some consonants in some combinations at these joints was pretty bad. But that told us nothing about the combinations that weren't there. (2) Vowels, whether alone or in pairs, were distinctly more intelligible than consonants. I found this surprising and, later, useful. There were also some scattered results on the pronunciation of vowel-pairs; but these were not systematic enough to be useful. It was the failure of TT2 as an experiment but its success as a way-pointer which led to the more sharply focused work of TT3 on vowel-pairs and, later, of TT4 on consonant-joints. - 9. Taste Test #3: Preferred Pronunciation of Vowel-Pairs: This was a very simple experiment that worked. TT3 was sent out with TL4/4 and presented 48 mock-Loglan words containing every possible vowel-pairing, except ee, in the CVV-terms of 2 kinds of 6-letter words: CVV+CCV and CVC+CVV. We received 51 responses; and the results, while hardly a consensus, were consistent phonologically. That is to say, a nearly-systematic phonological pattern emerged: (1) ai ei ui should be monosyllabic in both contexts (initial and final; both P's around .05). (2) ae ea eo eu oa oe ou should be disyllabic in both contexts (P's around .05). (3) au ie iu oi ue should be monosyllabic when final (P around .05) and probably also when initial but differences not significant (P greater than .05). (4) aa ao oo should be disyllabic when initial (P around .05) and probably also when final but not significant. (5) With uo ua ia the Ss favored monosyllables in both contexts but non-significantly. (6) With ii Ss favored the disyllable in both but non-significantly. (7) With io Ss favored the monosyllable when final, the disyllable when initial; but neither significantly. (8) On uu the Ss were split in both contexts. The pronunciation system that completes this nearly-perfect pattern is, at the same time, one that meets the requirements of the new morphology: (a) all i-containing and uninitial pairs except ii and unu are to be regarded as monosyllables in both positions, or at least neither vowel in such a pair is to be given the word-stress when the pair is final even when pronounced disyllabically (it is almost a trivial matter whether such pairs are pronounced disyllabically or as true monosyllables when they inhabit the penultimate term of a complex, provided that, if disyllabically, the second member of the pair is stressed); (b) ao is to be a monosyllable in both positions (because it is a true diphthong and can be, and is thus definitely distinguished from disyllabic au); and (c) all other vowel-pairs are to be treated as disyllables in both positions. Word-stress can then be on the penultimate syllable, as usual. This is the system I have followed in contriving the pronunciation guides for the remade complexes, and in doing the resolutional analyses. And, with the single qualification that when a u- or initial pair follows either of the vocalics r or 1 in final position, as in ka'krui, when there is a strong temptation to treat this normally monosyllabic pair as a disyllable and let the stress slip rightward, producing kakru'i, the system seems to work. But even this is not a serious problem. If we felt that these "monosyllables" were contextually biphasic, and that in these post-r/l
contexts they are "really disyllables", then all we have to do is exclude them from the ranks of of the vv's that make proper spai-form words when in such contexts. For if *kru'i is to be, like *spe'a, not acceptable as a CCvv-form borrowing, then there is no problem with the -kru'i part of kakru'i being heard as one. But this is an open issue. I seem to have no trouble saying ka'krui; and prefer to. And doing so retains krui among the spai-form borrowings. But perhaps most speakers will have trouble, or will not prefer to. In which case rui and kin will have to be reclassified as disyllables and some words remade. The problem evidently needs some further study. 10. Taste Test #4: The Intelligibility of the Consonant Joints: The stimulus materials for this important study, namely 739 mock-Loglan words of CV'CCV- and CV'CCCV-form built to exhibit every possible C/C and C/CC joint in the language, were prepared in the Spring of 1981 and distributed to a selected set of reader/listener-pairs. The purposes of the study were (i) to test Anthony Lovatt's 1977 hypothesis that many medial CC combinations proscribed in 1975 were actually quite intelligible, and (ii) to identify the most unintelligible combinations at the C/CC joint so as to avoid or hyphenate them in the construction of complex predicates. By randomly presenting both CV'CCV and CV'CCCV words on the same test, subjects were given an opportunity to mishear consonant doublets as triplets, and vice versa. Thus the accuracy of consonant-counting is also at issue here, a matter that will be crucial for distinguishing some primitives from some complexes in the new morphology. Three pairs of loglanists, the Lees, the Prentices and the Jenners, responded; and my daughter Jenny and I made a fourth. Collectively, these four reader/listener pairs provided me with 7 massive "slabs" of data across the entire stimulus field, 739 responses in each slab. (Three of these couples exchanged roles and did the whole experiment twice...an experience that consumed part of many weekends. We owe a lot to these doughty subjects.) Understandably, the data took some time in coming in; but in late August and early September 1981 I was able to make the first of several analyses. The CC results seemed very firm; but I was forced into a conservative statistical posture on the C/CC joints by the small size of the sample: that is to say, of calling some C/CC joints "bad" that might not be bad given information from a larger sample. But the results were good enough to arm the word-making algorithm Bob McIvor was then preparing for TT5. This algorithm was instructed to insert hyphen r at the C/CC joints of all the D-Set trial words that Early TT4 would tentatively labeled "bad". The same words were also to be submitted to the TT5 subjects without hyphens; so a rough check on these early TT4 results was to be built into TT5. But this was not enough. Intelligibility is essentially an acoustical phenomenon between a source and a receiver. It cannot be predicted, I was learning, by the subjective judgement of single individuals. (There is remarkably little correlation between joints that individuals think are bad and those that are bad dyadically.) So in February 1982 I sent out, with TL5/3, a second wave of TT4 forms. The response was gratifying. Some 37 loglanists managed to find a listener, or to play both roles by recording and listening to themselves, and so to respond to at least one of the 9 "partitions" (8 of 82 words and 1 of 83) of this immense block of test materials. As a result I obtained 4 1/3 "composite slabs" to be added to the 7 slabs produced by the first wave. (There were "4 1/3" additional slabs, and not some integral number, because, from the 2nd wave, I received 5 sets of responses to 3 of the 9 partitions but only 4 sets to each of the other 6.) Thus, in the end I had 8376 intelligibility responses to analyze, 5173 of them provided by the 8 subjects of the 1st wave and the rest from the 37 subjects of the 2nd. The findings from the 2nd wave confirmed nearly all the solid results from the 1st wave and allowed me to abandon the conservative posture I had taken toward the C/CC joints. It was now clear that some joints I had tentatively labeled "bad" were only difficult...not really unintelligible to my subjects. These findings are shown in Tables 1 and 2, in which the entries for the combinations I judge now to be truly unintelligible are in bold-face, and those for the merely difficult ones are underlined. You may wish to take a preliminary look at those tables. Both the tabled variables f and i are measures of unintelligibility, but slightly different ones as will now be explained. The data from the two waves have been consolidated in the tables. It would have doubled their length to show the two waves separately, and there are no statistically significant differences between waves. Even the personal error-rates, which seemed certain to be different in the two waves--after all, some of the most experienced speakers and listeners in the whole of Loglandia were in the 1st one--turned out as a whole not to differ significantly between waves. People in the 1st wave had a 15.2% average error-rate; in the 2nd, 18.6%. This is a difference, and in the expected direction; but it is the sort of difference that could occur by chance alone about half the time (P = .48). But error rates do differ significantly between individuals in the sample. Three individuals in the 1st wave tied for the lowest overall personal error-rate, which was 7% over the 9 partitions, and the best single performance on any one partition was 2.4% (2 errors in 82 tries; these are difficult words). In contrast, three individuals in the 2nd wave had personal error-rates in excess of 44%, and the highest rate observed for any one subject was 55% (45 errors in 82 tries). Yet, despite this concentration of the very low and the very high error-rates in the 1st and 2nd waves, respectively, there was, as I say, no difference between the two waves that could be believed in statistically. Obviously there were both some practiced speakers and some novices in both waves. That there were nearly order-of-magnitude differences in personal error-rates among our subjects (7% vs. 55%) is an important fact in itself. Evidently even these often very difficult mock-Loglan words turned out to display vaguely familiar patterns to our most experienced loglanists. So the reasonable words on the list, though meaningless, were really quite easy for them to hear. On the other hand, the subjects I am calling "novices" (and one or two genuinely were) made all sorts of errors on words that are really quite plain to the loglanist's ear...if properly pronounced. So obviously either the readers or the listeners on these teams, and probably both, were thrown off their stride by the outlandishness (Loglandishness?) of the material, as the practiced listeners and readers most assuredly were not. So this grand, order-of-magnitude effect of what can only be inferred to be learning, on both the Loglan listening and speaking arts, ought to give some comfort to our novices. With sufficient practice, even totally unfamiliar Loglan words can evidently be plainly heard. No one doubted that, I know. But it is comforting to have some hard data on this point. Just because there were such large individual differences between the novices and the practiced speakers in our sample, I was obliged statistically to take error-rate differences into account in analyzing the data. After all, if a subject made only one error in a column of 41 words, as often happened when one of our three best listeners was doing the listening (and his or her equally practiced partner, the reading), that error almost certainly meant much more about the unintelligibility of the word which provoked it than if that same error had been one of 20 made in the same column. (Exactly this kind of difference occurred among our subjects.) So in addition to the frequency with which errors were made on individual words, which is the upper figure in each cell in the tables, I also tabled the "error information" collected for that word from the error-rates of the individual subjects who missed it. I defined the "error information" on a given word as the sum of the negative logarithms (Claude Shannon's measure) of the "local probabilities of error" being exhibited by the subjects who missed that word at the time they missed it, that is to say, of the probability of error in the column in which they missed it, multiplied by 10 for convenience in tabling. Thus, each error is regarded as a "message"; and the information content of that message is the familiar negative logarithm of the probability of its having been "sent". I called this sum of information i, and it is the lower figure in each cell of both tables. TABLE 1. THE PHONOTACTICS OF THE C/C JOINT 16 X 17 matrix; 232 cells occupied. 1st C, row; 2nd C, column. Upper figure is error frequency f, lower, error information i; see text. | ıst | | row | ; ∠n | ia C, | COT | umn. | | | | | TOM | er, | erro | r. Tir | TOLE | atio | 11 1, | see c | CAU. | |-----|-----------|------------|-----------|---------------|----------------------|-----------|--------|---------|---------------------------------------|--------------|-------------|-----------|----------|------------|---------------|------------------------|---------------|-----------------------|------------| | | | | | | | | | | | | /P | | | | | | | Sum | | | B/ | 11 | | 2 | 2 | 1 | | 1 | -1 | | 1 | 1 | 2 | | -1 | 2 | -1 | range et a | 21.4 | | | | | \\\
\\\ | | | | 2
10 | 1
8 | | 2
8 | -
- | | -
- | -
- | 1
6 | | 3 i
27 i | | 13
80 | .8
5.0 | | G/ | <u>-</u> | 1
8 | | 1
4 | | 1
4 | - | 1
11 | 3.6
33 | 1
7 | | 1
4 | •8
5 | 1
5 | | 2
20 | | 15.4
113 | 1.0
7.1 | | | .8
3 | | 8 | 111 | | - | | - | 12 | 23 | | 6 | _ | | 14 |
91 | 41 | 15.4
112 | 7.0 | | M/ | | _ | 2 | 2 | 111 | .8 | 1 | 1 | _ | 2.8 | 3
24 | <u>5</u> | 2 | .81 | | 1 | 11 | 23.4 | 1.5 | | N/ | 1
8 | -
- | | - | | | | | | | 2.6
24 | | - | - | | -i
-i | | | .6
4.9 | | L/ | <u>-</u> | -
- | - | -
- | | | /// | | - | | -
- | <u>-</u> | | 1 İ
4 İ | - | -i
-i | | 3
17 | | | | - | . 6 | | -1 | _ | _ | - | 11 | - | 91 | - | _ | - | -1 | 5 | 16 | -1 | 6.8
36 | 2.3 | | J/ | 2.8 | 1 | .8 | 2 | 1
11 | 2 | 1.8 | - | 1111 | ////
//// | <u>-</u> | 4 | - | 3.6
22 | 1111 | / / / /.
 / / / /. | 3.6
 15 | 22 . 6
-157 | 1.7 | | | 6 | | - | 25 | 21 | 4 | | 1
4 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ////
//// | l 1
l 13 | - | | 3
23 | 1111 | //// | 2
 16 | 23.0
157 | 12.1 | | P/ | 11 | _ | - | 3 | - | 1 | _ | 2
10 | 1111 | //// | \\
 \\\ | | - | 5 | 1 | | .8 | 12.8
85 | 1.0 | | | | \\\
\\\ | | | 1 6 | 1.8
10 | | 1
5 | 1111 | 1111 | 1
 4 | /// | 1 | 1
7 | -
- | | | 14.6
91 | | | K/ | -
- | | | 1 11 | | 2
12 | - | - | | ,,,, | l 1
l 7 | | /// | | | | 2
 10 | | 1.0
5.6 | | F/ | | - | 8 | \\\
\\
 | 7 | 1
5 | 1
4 | - | \ \ \ \ \ \ | //// | -
 - | ·1
- 7 | | 11 | | | 2
 17
 | 78 | 6.5 | | | | 5 | | 4 | .8 | _ | _ | 16 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | //// | 3
 22 | | - | 2.6
18 | 1111 | //// | 3
 21 | 25.2 | | | | 45 | | 17 | 25 | | _ | _ | - | \\\'
 \\\' | \\\\
\\\\ | - | 1
4 | 5 | 1
6 | \\\\
 \\\\ | ,,,, | 1
 9 | 20.6
136 | 10.5 | | f: | 13
1.0 | 14 | 15
1.0 | 24
1.7 | ====
 11
 •7 | 13
.8 | 11 | .5 | 18
 2.2 | 13
1.6 | 14 | 18
1.2 | 11
•7 | 24
1.6 | 9
 .8 | 17
1.4 | 21
 1.3 | 252.4
f' | = 1.1 | | i: | 100 | 89 | 104 | 180 | 79
15•3 | 71 | 68 | 63 | 1137 | 84 | 1112 | 112 | 66 | 146 | 47 | 117 | 130 | 1705 | | For example, in Table 1 on the C/C joints, B/J is apparently the "most unintelligible" combination. Evidently "6.4" subjects missed it; and that is the largest value of f that there is in this table. (Actually, 7 out of 12 subjects missed it. But because the sample size of 12 applies to only 3 out of the 9 partitions, and as exactly 11 subjects had responded to all the other words on the list, all data has been transformed to a (mythical) uniform sample size of 11. Thus 7/12 = 6.4/11, approximately.) And evidently those 6.4 subjects collectively contributed "54 units of information". We can easily convert that ivalue back into the average of the local probabilities of error...well; into something pretty close to that average, anyway. Thus 54/6.4 = 8.4375 gives the average amount of information i each subject who missed the B/J word had supplied; and this corresponds (after dividing it by 10, negating it, and taking its antilogarithm) to a certain probability: thus P = antilog -.84375 = .143. The antilogarithm of the average information systematically underestimates the average of the true local probabilities...by a lot if they were few and very different, by very little if they were numerous and/or similar. But it is the best that we can do without going back to the original data each time; and the average we are going to compare it with also contains this bias. Evidently the average local error-rate of those who misheard the B/J joint was not less than, and probably pretty close to, 14.3%. Now this lower bound on the average local error-rate of the subjects who misheard a certain word is sometimes very useful. It tells us whether the practiced speakers were joining in the fun. Evidently they were on the B/J word...at least to some extent. For the average local error-rate of all our subjects, whenever they missed any of the CVCCVwords covered by this table, is 21.1%. (That's the total sum of i divided by the sum of f, in the bottom righthand corner of Table 1, the result divided by 10, negated, and its antilogarithm taken. 21.1% is higher than the average column-by-column error-rate, which happens to be 16.4% for all columns, only because, in calculating the average local error-rate, a column which has many errors is counted many more times than a column that has few.) Now 14.3% is substantially lower than 21.1%. And the only way it can have been any lower than the table average is if some better-than-average listeners were joining in the error-making fun. Thus we can argue that B/J is probably genuinely difficult to understand. For although 7 out of 12 (6.4 out of 11) is not really a very high frequency of error--compared to some of the error-frequencies in Table 2, for example-some better-than-average-listeners were almost certainly involved in the mishearing of B/J. It is not, in short, entirely a novice's error that we are looking at in the B/J cell. Average local error-rate--let us call it 'r'--is not, of course, the only, or even the best, measure of intelligibility (if it were, that is the variable I would have tabled). r is only one of 3 measures I found useful, the others being i and f. But r is the one that tells us what mixture of novices and/or experts were missing a given word. That is never all we need to know. For example, look at M/DJ in Table 2. Only 3 Ss missed this word; but they generated a lot of information doing it: i = 28. Evidently there were some (normally) pretty good listeners among these 3. Sure enough, r for these 3 Ss was 11.6%, about half the average for the C/CC table, which is 20.7%. Still, only 3 out of 11 subjects missed this word. So a good many normally poor listeners must have been hearing it correctly. The very fact that many poor listeners heard the M/DJ word correctly surely means that we are not justified in calling it "unintelligible"! So let us put the bad performance of (1 or some of) our good listeners on the M/DJ word down to momentary inattention, or to random noise. (Perhaps a dog barked. Or there were undetected transcription errors.) On the other hand, we might well think it reasonable never to label a word unintelligible if its r is much greater than the table average; for that would mean that the good listeners were not mishearing it. But, luckily, such cases do not exist if f is at all high. There is only one word among the 20 or so with highest f and f values that gives even an average f...and that word happens to be the only one that 10 of our 11 subjects missed! The word is sejtei in the f and f values that f average of 20.7% So, of course the 10 out of 11 Ss who missed sejtei were collectively showing only "average skill" when they missed it. They were nearly all the subjects that there were! So the fact that the f of a cell is substantially equal to, or even a little greater than, the table average is not much use to us when f is high. And the stronger criterion that f be much higher than the table average is not met even among "baremajority" words, i.e., those with f = 6. Apparently, then, some good listeners were joining in every majority that missed a word. So what we want to label unintelligible are apparently words that meet either of two criteria: (i) either they have very high f, in which case r will automatically approach the table average; or (ii), with moderate values of f, we must have evidence that at least some considerable fraction of the practiced speakers were among those who missed the word. This will be true only when i is sufficient to yield an r that is substantially less than the table average. It turns out that all words that have both f of at least 6 and i of at least 40 meet one or the other of these two requirements. And these are the ones whose entries are in bold-face in the tables. As for the underlined words, these are all those joints that might have been taken as difficult on one sort of evidence but not the other, or were "close misses" on both. Considerations of this kind guided my studies of intelligibility in these tables and led to the selections shown. Using the same scale of unintelligibility for both tables, I came to the conclusion that, in Table 1, only 2 of the 232 C/C combinations investigated had proved difficult enough to be called "unintelligible": the B/J case we have already discussed and, on somewhat weaker grounds, S/B. There is only one complex with a B/J-joint in the present list of remade complexes, namely pebrjio; and I have, as you see, hyphenated it. There are no S/B's. So even the 2 C/C joints I am proposing be proscribed are not really very troublesome...since they hardly ever occur among the tuned words. There are 3 more medial pairs which are underlined in this table, namely M/T, C/D and S/D. These may well be difficult enough for some speakers or listeners to want eased with hyphens even if we are not always obliged to. I do not myself find words with these joints very difficult--certainly not unintelligible--and I have not hyphenated their occurrences in the present list of complexes. On the other hand, if anyone decides to say recrdo'u instead of recdo'u, or dasrdo'u instead of dasdo'u, I (and others, I am betting) will certainly understand da. M/T occurs in the tuned CPXs 5 times; C/D 3 times; and S/D 8 times. As far as I know none of these 5 pairs occurs as a medial consonant-pair in any primitive. Thus, Tony Lovatt's hypothesis about "freeing-up the medial consonant-pairs" appears to be working splendidly. Turning to Table 2 on the C/CC-joint, the outcome is if possible even more auspicious for the new morphology. It is true that, on the same scale of unintelligibility, I find 19 C/CC cases that are in principle difficult enough either to hyphenate or to avoid altogether. These are, in the order of their unintelligibility, G/ZB, J/TC, J/DJ, M/ZB, N/DZ, D/CT, K/DZ, G/TS, C/DZ, S/VL, P/DZ, V/TS, N/DJ, D/CM, T/VL, D/TS, J/TS, J/VR and C/VL. But Nature seems to have chosen sides here. Words involving these 19 unintelligible triplets almost never occur! In fact, in the present list of some 2000 remade complexes, I find only 3
words that involve these now-proscribed combinations; and, of course, all of them, like pebrjio, are now hyphenated. They are rinrdzo (N/DZ), hadreme (D/CM) and lagrzbutau (G/ZB). There are, of course, other occasions for the phonotactic hyphen, namely all the extensive cross-hatched areas of both Tables 1 and 2. But finding a total of 4 more occasions, out of 2000, on which the new morphology dictates a hyphen is not, I think, cause for the smiting of foreheads or the wringing of hands. Do take a moment to notice G/ZB, our worst case (f = 9; i = 84; r = 11.8). word was magzbo; and magzbo comes as close as any word on the list to being utterly unpronounceable...despite the fact that the speaker thinks he's said it with great precision every time. (As you will!) Confident as our readers were, however, that they had actually spoken this word as written, only 2 of our 11 listeners managed to hear the z in it. All the others--which includes all our best listeners, this time--heard the word as magsbo...as I'll wager you will, too. In other words, here is a word where the speaker's conviction that da is speaking correctly is almost absolute. But the listener seems to be unable to find enough acoustic cues to the speaker's intended performance to be able to repeat it correctly in de's own head. N/DJ provides another instance of this sort of "self-destructing" word. The test word in this case was sondji. Again, the speaker always thinks da's said the d when da reads sondji. In fact, da has no difficulty whatever with its pronunciation. But the d drops out, as it were, on its way to the listener. And so what the listener hears is sonji. Even those listeners who wrote down 'sondji'--and so got it "right"--almost certainly heard /SONji/. That is why, since the morphological difference between sondji and sonji is crucial in the new morphology--the difference between a primitive and a complex--we must introduce a hyphen into the former (should such a word ever occur), thus both speaking and writing sonrdji when we have the complex in mind, and banish its unhyphenated form from the language altogether. For if we kept TABLE 2. THE PHONOTACTICS OF THE C/CC JOINT - Part 1, The Left Half (Middle consonants B through K) 16 X 36 = 576-cell matrix. |/BL /BR|/CK /CL /CM /CN /CP /CR /CT|/DJ /DR /DZ|/FL /FR|/GL /GR|/JM |/KL /KR ___ | _____ | _____ | _____ | ____ | ____ | _____ | _____ | _____ | _____ | _____ | ____ | ____ | ____ | ____ | -----1 - | - | 1.8 | 2 3 50 26 27 - 60|\\\\\\ 8 - | - - | 11 | 16 10 | - | 10 |----| G/ [1.8 2]2.4 1.8 3 2 -5 3 17 8 - <u>34</u> 24 - <u>35</u> - - |\\\\\\ 20 | 12 | 13 | 10 | 22 1 3.6 1 5 2 2 4.6 2 2 - 2 4 8 V/ | 2 3|1.8 5 2.6 | 13 | 18 | 11 | 30 | 16 | 4 | 16 | 11 | 30 | 11 | 9 | 23 | 11 | 12 | - | 14 | <math>| 34 | | 3 -- .8 3 - 1.6 3 - 2.8 - 1.8 3.4 1.6 .8 - - 3 21 - 14 28 - 16 - 14 26 12 27 | 11 15 1 1 2 - 2.6 1 4 1 3 6 1 8 1 - 1 -- | 2 | .8 1.8 | 17 | 11 | 14 | - 17 | 7 | 25 | 9 | 17 | 50 | 11 | 64 | 8 | - | - | - | 13 | 5 | 12 2 | 2 3.4 1 1 2.6 2 1.8|3.8 -3 - - 11.8 - | - | -10 | 11 | 25 | 6 | 7 | 11 | 14 | 10 | 28 | 27 | - | 10 | - | - | -R/|--|3--1.8| 2 2 5 4.2 1 - 1 - 11 -.8 4|\\\\\\\\\\\\\\\\\\| **8** 2.6 5| 3 3| 2 5|\\\\|3.8 1//// 2 1 3|\\\\| --- ----- ----------|----|----|----|----| P/ |\\\\|6.2 .8 - .8 3 1 2 3 4 6.2 1 2 3 2 |\\\| 5 6 **-** 3 15 5 19 24 21 **51** 8 10 16 10 \\\\ <u>39</u> |-----| |----| 11111 T/1 3 - 13.6| 24 - | 13 |-----| \\\\| -----|----4 1 1.6 -1| 6 1 K/ | 1 7 8 - $3\overline{4}$ | 8 11 39 |-----| F/ | 1 - | 1.8 2 2.6 .8 2 3 2 | 4.8 - 4 | \\\\\\ | 1 - | \\\\\ | .8 3.6 | 8 - | 9 9 9 3 13 12 12 | 35 - 27 | \\\\\ 8 - | \\\\ 3 18 1 3.8 1 1 4 2.6 \\\\ | 21 | 22|\\\\\\\\\\\\\\\\\ <u>39</u> 7 26 6 6 28 18 \\\\ 5 11.8 1.4|2.7 1.3 1.5 1.3 3.1 1.3 3.2|4.3 1.1 4.7|1.1 1.1|1.4 1.4|2.7 |1.5 1.5 i: |163 126|199 99 114 88 239 98 275|465 86 474|108 129|123 122|162 |161 151 1 12 9 1 17 8.3 9.5 7.3 20 8.2 23 33 6.1 34 7.2 8.6 8.8 8.7 20 | 11 10 TABLE 2 (CONTINUED). Part 2, The Right Half (Middle consonants M through Z) 468 cells occupied | | | | | | | | | | | | | | | | | | 112 0 | | | |-------------|------------|-----------|-----------------|---------------|---------------|------------|--|--|-------------|----------------|--------------|---------------|----------------|--------------|-------------------------|------------------|---------------------------|-------------|---------| | /M-
/MR | /F
/PL | PR | /SK | /SL | /SM | /S-
/SN | /SP | /SR |
 ST | /TC | /TR |
 TS
 | /VR | | /ZB | Z-
 ZV
 | Sum | Avg | | | 2 | 1.6 | 2.8 | - | | 1
6 | | | | 2
11 | | - | 5 | | 3 | 3 | | 61.8
414 | | | | 1
5 | - | | 2
20 | 1.6
11 | -
- | 1
5 | | | - | | | | | | | | 61.4
440 | | | | •8
5 | 3
19 | | - | 3
15 | 3
22 | | -
- | 1.6 | | 4.6
40 | | | 4 | 2.8
18 | 84 | | 78.6
542 | | | | .8
3 | | |
 .8
 6 | 1
13 | 3
22 | | 1
11, | <u>5</u>
39 | | 27 | 7 | 6
53 | 111 | \\\\
\\\\ | 4.6
33 | 3
21 | 80.6
537 | 2.4
15.8 | V /
 | | | -
- | |
 -
 - | | 1
7 | - | 1
7 | | -
- | 1000 | | 4.4 | - | 1 | | 1.8 | 47
 361
 | | | | 4
28 | .8 | |
 -
 - | 1
5 | | 3.6
30 | | | 1
6 | 70 | | 3
20 | | 1
7 | 1
1 10 | | 70
 483
 | | | | 2
14 | .8
 .8 | |
 2
 19 | | | | - | 2
15 | | 3
21 | - | 3
16 |
 1
 8 | -
- | <u>5</u>
 <u>35</u> | <u>5</u>
29 | 51.2
 339 | 1.4
9.4 | L/
 | | 1
4 | ļ - | - | 21 | | 1
5 | 3.2
23 | 1
5 | 1.8
7 | =1 | 1
 6 | - | | -
 - | 6 | 42 | 32 | 51.8
 364
 | 10.1 | i | | | 4.6
33 | 2
16 | \\\
 \\\ | //// | //// | //// | //// | //// | 1111 | 68 | | 6
48 | 6 | 22 | i\\\
 \\\ | 1111 | 180.4
1 552 | 4.2 | ÌJ/ | | 18 | 4 | 2 | 1111 | 1111 | //// | //// | //// | //// | .,,,, | 1 5 | | 24 | 13 | 1 6 | \\\
 \\\ | ////
///// | 47
 292
 | 15.4 | 1 | | 1 | 1111 | //// | i 1 | | 2
13 | | 1
8 | .8 | 1 11 | 1 4 | .8 | 5.4 | 1 2 | 4.4 | 1111 | | 167.4
1 455 | 2.3 | P/ | | | 2.8 | | 1 1 | - | 1
6 | _ | 12 | 1 4 | 2.8
24 | 1111 | 1111 | 1111 | 1 18 | | | //// | 147 . 2 | | | | 1.6 | 11.8 | | 1 3 | | | | 14 | | 1 2 9 | 4.4 | 1 | 25 | 1 10 | 36 | <u> </u> | ,,,,, | .166.8
.1 449 | 2.3
15.5 | 3 K/ | | 1
8 | | |
 3
 18 | | <u>-</u> | | | | 4.8
3 42 | 1 10 | 13 | | 1/// | ,,,,, | (\ \ \
(\ \ \ | ,,,,, | . 49
. 309
- | 10.7 | 7 | | - | 1 2 | 12 | 1/// | //// | //// | //// | //// | ./// | 1111 | 15.4 | - | 5.1 | 1 : | 5 6
1 43 | 5 \\\
3 \\\ | 1111 | (155.2
(1 381 | 2.9 | Olc/ | | 3 | Ī - | 11 | 1111 | 1111 | ,,,,, | 1111 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,, | 1 22 | _ | | 1 3 | 4 (4 55 | 5 \\\
5 \\\ | ,,,,, | 45.2
 338
 ==== | 17. | 31 | | 24 | 1 21 | 18
1.2 | 3 15
2 1.3 | 5 13
3 1.1 | 3 19
1 1.6 | 20 |) 17
5 1. ¹ | 7 20
1 1. | 0 13 | 3 62
 4.1 | 2 13
1 •9 | 3 61
9 4.9 | 71 31
512. | 0 41
1 3• | 4 40
1 5.0 | 0 28
0 3.5 | 3 960 .
5
- | 6
f' = | | | 136
9•1 | 1126 | 107 | 1126 | 107 | 124 | 138 | 3 112 | 2 119 | 5 103 | 3 40 | 5 91 | 4 470 | 121 | 4 31 | 1 31 | 9 17 | 6 656 <u>9</u> | 5 | 14.0 | it, it would, willy-nilly, always turn itself into sonji by the time it arrived at the listener's ear. (That is why, incidentally, sanpa djano is saa'dja in the new lexicon and not *sandja...a word that would self-destruct. Sa'nrdja is an equally intact alternative; but the r costs more than the CVV, as we'll see from TT5.) In sum, TT4 was a happy study. It confirmed Lovatt's hypothesis beyond all reasonable expectations, and it sharpened up his notions about medial CCs in the very few places where he was wrong. Even more importantly, it dispelled the widespread notion, which I once shared, that the C/CC joint—so frequently called for by the new morphology—is inherently awkward and "bad". It is...in certain combinations. But they happen to be combinations that our language simply does not use, or can easily be tuned to avoid. Apparently, nearly all the C/CC joints that "arise naturally" in Loglan are intelligible (once its affixes are properly tuned). And those few that are not intelligible, are so very few that the hyphens we add to the language on their account will be virtually invisible features of the language. 11. Taste Test #5: Preferred Sequences in Complex Predicates and Tuning the D-Set: In the background material I sent out with TT5, I said, after explaining the research model, 'If the model works, TT5 may very well be the final data-gathering effort of the GMR team.' Well; it did, and it is. The model not only worked, but the performance of the subjects who participated in it exceeded my most sanguine expectations. The Lobeast has given every sign of having functioned exactly like that beauty-detecting algorithm I invited it to imitate. By way of brief review for readers who weren't among its subjects, TT5 was sent out in February 1982 to about 190 loglanists. The stimulus material sent each loglanist was a random 1/185th of an immense corpus of some 13,000 trial words that Bob McIvor and I had prepared over the preceding 6 months. The trial words were generated from two distinct affix sets (Sets C and D, this time) by a computer programmed to express 1954 distinct "complex concepts" (2- and 3-term metaphors) in just about every possible way given those affixes. The test concepts were thus a large subset of the 2262 complex predicates in the 1975 dictionary; and each concept was expressed, on the average, 6.6 different ways. Each loglanist received an average of 10.5 concepts, and so about 70 words. But each was asked to rate only the two best words for each concept. I received 76 returns covering 802 concepts from 48 loglanists, 12 of whom had elected (at our invitation) to do more than one form...a
negligible, or even desirable, bias in the sample. Five respondents (again, at our invitation) elected to rate all the 70-odd words on their forms; and from their 350-odd responses I was able to get reliable estimates of the average most-probable ratings of the unrated words on the other 71 forms. (They were "reliable estimates" only ex post facto, of course; that is, known to be so only because they later behaved so well statistically. I certainly did not know beforehand that they would.) This gave me some 1840 directly-rated words, but also some 3390 indirectly-rated ones, or 5227 ratings in all. This is not only a very large body of data, but, by design, the words rated covered a truly extraordinary range of affix types and sequences, often with sufficient numbers of even rare types to make a detailed componential analysis possible. In the end, the statistical analysis of these 5227 numerical ratings allowed the selection and fine-tuning of an affix set capable of remaking the 2000-odd complex predicates in the 1975 dictionary in "the most satisfactory possible way". It did this by enabling me to quantify satisfactoriness. That is, it made possible the assignment of a numerical value, or score, to any word that could be made with these affixes in such a way that each score constituted a prediction of the degree of preference that particular word would enjoy over other equally possible (and so, scorable) alternatives for that same concept. It was then a simple matter, for any state of the lexicon, to sum the scores of all its complexes, and, by replacing some of them with words of higher score, or by moving affix-assignments around among the primitives so as to cause a net increase in the scores of the words they made, or, finally, by remaking some primitives so to make better affixassignments possible, to progressively increase the sums of scores for successive states of the lexicon until, demonstrably, no further increase was possible...unless, of course, the remaking of even more primitives was still contemplated. But there came a time when the cost of remaking even the most promising primitive left with uncovered complexes was palpably--though not, I fear, exactly quantitatively--greater than the small net increase in word-scores its remaking promised; and the procedure was terminated. The procedure described in the last paragraph may be called "tuning". It was the business of TT5 (1) to select one of the two test affixes sets, C or D, for tuning, and (2) to provide the quantitative instrument—the "tuning tables"—with which to tune the affixes of the set selected. That so much could be accomplished by a single experiment seems extraordinary...and we were, in fact, extraordinarily lucky in TT5. Every important question I asked of it, save one, was answered; and the one unanswered question was itself a "lucky negative". (I had asked it to tell me whether "natural" CVCs, e.g., mat from matma, differed in preference value from "unnatural" ones, e.g., mam from matma and rel from trelu; and it couldn't tell me. Or rather what it did tell me was that the difference was probably a very small one, and in any case so small as not to be able to punch through the variance in what was in fact a very considerable number of relevant cases. I regarded this answer as an extremely fortunate one. For as TT1 so strongly suggested, CVC-form affixes are indeed most contributory to high scores. To be able to use the mam— and rel-versions of them freely practically doubles their availability. So you can see why I regarded this one negative finding as luckily so.) There will not be space here to describe all the statistically significant results of TT5. It was as full of them as a Christmas pudding; I have seldom seen a richer body of data. But I will recount all of those that led to the choice of Set D for tuning, as well as those that contributed to the construction of the Tuning Tables shown in Table 3. As to the numbers in those tables, please read the note in the bottom righthand corner first. All tuning scores are expressed in this arithmetic. A "tuning-point" is thus one-tenth of an interval on the original 10-interval (11-point) rating-scale. And please note that a 3term CPX with all its terms reduced -- that is, with 3 short affixes -- contributes, on the average, 1 1/2 times as many such points to the sum of scores for the lexicon of complexes (the number I have labored to increase) as a similarly reduced 2-term complex. Of course the subjects "didn't see it that way". But we must. Therefore the scores in the table for the "SSS's" are in the 70's and 80's, while the maximum value of an "SS" (prettier words, surely) is only 56. Please don't let this bother you. We are not trying to reproduce the ratings made by our subjects, but to use them to predict preference between comparable words. Since a 3-term metaphor can't be expressed in a 2-term word, it can hardly be relevant that our subjects would like it better if it were. Just as it is only marginally relevant to the tuning problem that our subjects like menkatma-type words best of all. With these cautions, we are now ready to consider the results. 11.1 Set C vs. Set D: The words made with D Affixes were better than the words made with C Affixes on every possible comparison. If we look at the most highly-rated D-word and the similarly "best" C-word for each concept, when the two were different (613 cases), the best D's averaged 64.8 and the best C's 61.8 (P about .004). One-third of a scale-interval (3 tuning-points) is evidently a big difference, statistically. Even if we add in the 189 cases in which the best D and the best C word were identical, the shared word in general rating higher, the difference is between 67.3 and 65.0, about 1/4 of a scale- interval (2.3 points) and still significant (P about .01). That's considering only the 802 concepts on which we got subjects' ratings. But when the tuning tables were constructed, I also scored (by computer, fortunately) all the C- and D-Set words that had been made (before tuning the D words, obviously) for the entire test set of CPXs. (There were 1941 of them by that time; 13 of them having somehow got "lost" in the recesses of my computer.) The difference now was astronomical. Taking the highest-scoring word made by the original algorithm for each set for each concept, the average score--not a rating now, but as obtained from the tuning tables -- for the best D-words was 52.5 vs. 40.3 for the best C-words, or 12.2 points difference. That's more than a full scale-interval. (The P for this result is so small as to be incalculable from my tables: less than .000,000,...). This is because, of course, D makes many fully-reduced short words possible; C, many fewer. And a word with an unreduced term gets penalized, of course, by the tuning tables...despite the fact that (let me repeat my caution) some unreduced words (certainly not all) are rated higher than any others. So, as far as ripeness-fortuning is concerned, the issue, clearly, is coverage by short-affixes. C has only 70.0% coverage; D had 93.6% coverage even before tuning began, and has 95% now. So there was no question but that it was the D-Set that should be tuned. But then I'm afraid there never was. The virtue of including C-words in this experiment was largely statistical. They offered large contrasts with the more uniform D-words on almost every structural dimension of the complex word. And so they mobilized larger chunks of variance in the ratings to be ultimately accounted for by those structural differences than could ever have been produced by D-words alone. So it was having C along, I'm convinced, that contributed to the remarkable sensitivity of nearly all the statistical tests performed. Here, then, are some of the other results shown significant by those tests:- 11.2 Natural vs. Unnatural CCVs (0's vs. 1's): The prime dimension of change in the series of affix sets which I had constructed was getting rid of more and more "unnatural" CCVs, e.g, fra from farfu (which I came to call a "good unnatural") and dzo from madzo (a "bad"). (Recall that we started out with the "maximize the CCVs" hypothesis, which turned out to be the worst strategy of affix-assignment ever tried.) A "natural", of course, was like cli from clika. Had I been right in doing this? Set C was orthogonal to this movement, or even retrograde. It used many more unnatural CCVs, although its biggest difference from the D set is that it used no CVVs at all. But how did the CCVs fare? Pitting the unnaturals used by both affix sets against the naturals, there was 1/3 of a scale-point difference in favor of the naturals (3.4 tuning-points; P about .0004). Now this is not only a hugely significant finding statistically, that is, indubitably real, but it is an "across the board" result. In 18 paired categories of words, which differed pairwise only in the naturalness of their CCVs--20's vs. 21's, 00's vs. 01's, 8y0's vs. 8y1's, and so on, to use the symbols of the Tuning Tables (see the Key of Table 3)--a difference in this same direction and usually of about this same magnitude always obtained in the average ratings of the two categories of words being compared. There is no question, therefore, that unnatural CCVs are bad...and, moreover, consistently and everywhere bad. But how What is the tradeoff? Well; we'll see that those 3.4 points of badness are worth about 1/4 of a hyphen (which is pretty bad) but nearly twice as much as a switch from a monosyllabic to a disyllabic CVV (which is bad, but not that bad). What about the "good" vs. "bad" unnaturals? And there was even a third category that I looked at, the "specials" like **tci** from **titci** and **tco** from **totco.** These, I suspected, were actually pretty good...perhaps as good as naturals. But unfortunately there wasn't enough data to handle these subdivisions of unnaturalness, not even enough to give firm negative answers as in the
case of the "unnatural CVCs". So I took my first 3.4 tuning-points in hand and went on to the next question. - 11.3 Monosyllabic vs. Disyllabic CVVs (4's vs. 3's): Here I had 14 pairable categories of words to look at. The differences, of course, nearly always favored the monosyllabic forms, as I had confidently expected from TT3. But they were not so big as the cost of an unnatural CCV (only 2.0 tuning-points, on the average), nor so significant (P about .02), nor even quite so consistent. In fact, in the context of leading CCV, the disyllables fared slightly better than the monos...by about 1.3 tuning points. (This is not a significant difference, however; and I ignored it. Still, it's worth keeping in mind that clise'a (a mock-word) might just be slightly better than cli'sei; and is probably not worse.) In all 6 of the other paired-comparisons, however, monos fared from 4.2 to 1.2 points better than the disyllables. As I say, there is an average 2.0-point preference for the mono over the disyllable; and it is significant. So we have a second (nearly) across-the-board tuning factor to work into the Tuning Tables. - 11.4 The Cost of Phonotactic Hyphens: To answer this question I found I had 26 pairable categories, 13 small categories of words bearing phonotactic hyphens, 13 much larger ones with words of matched structure but hyphen-free. (A phonotactic hyphen is one that follows a CVC-form affix and is called for by the "difficulty"--in this case, the conservatively-calculated difficulty--of the ensuing consonant joint.) Fortunately for getting a solid answer to this question, there were far more phonotactically-hyphenated words among the trial D-words submitted to the raters than there are now among the CPXs listed in this Notebook. (And that, of course, was a consequence of the conservative posture I had taken toward the C/CC-joint after the first TT4 results! As I said, TT5 was a lucky experiment from first to last.) The differences between hyphen-free and hyphenated words were quite large (on average, about 12 points), indubitably significant (P less than .000,000,...), and thoroughly consistent (in the same hyphen-disfavoring direction in all pairs of categories that had enough hyphenated cases to be meaningful). So apparently it costs about 12 points in word-prettiness to hyphenate a joint. That's about 3 1/2 times the cost of an unnatural CCV and about 6 times the cost of a disyllabic CVV. I used this cost-figure to good advantage in tuning the affix-set...mostly by getting rid of joints that needed hyphenation. But we must remember that our subjects, all loglanists, were being introduced in TT5 to a totally unexpected feature of the new morphology, one meant to deal with a problem that had not even been described. So probably 12 points overestimates the real, or lasting, aversion of lo loglenta to the phonotactic hyphen. Mekrkiu is just not that bad. (Hyphen R had emerged from some formal studies I had made the previous Winter; my results had not been bruited about our shores.) Still, I cannot imagine that phonotactic hyphens will ever be regarded as altogether lovely features of the language, can you? They might, however, subside into aesthetic neutrality. However that may be, armed with this large, if perhaps ephemeral, cost-figure, I made correspondingly large efforts to reduce their number in the present set of complexes...and succeeded. 11.5 Short-Long vs. Long-Short 2-Termers (SL vs. LS): TT1 had found that 8-letter words with unreduced final terms (SLs), were the most delicious words on its list, e.g., menka'tma = 'tomcat'. Did that once-surprising result hold up? It did. Short-longs with CVC initials were still the most highly-rated category, earning an average rating of 57.9. (Short-shorts of CVC+CCV-form, with the CCV natural, came in a pretty close second at 56.8, again as before. This is not the comparison we're interested in here. Even so, it is the remarkable carry-over of even these detailed results from TT1 into TT5--with mostly different words and largely different subjects (at least 42% different)--that is one of the most impressive features of these taste-tests. It means that these elusive aesthetic matters at are somehow very real.) This time the short-longs were astronomically preferred over both kinds of long-shorts (P less than .000,00...), those with 5-letter terms plus Hyphen N from the C-Set, e.g., kanpi'nflo (or ka'npinflo), and those with 4-letter terms plus Hyphen R from the D's, e.g., ku'nerdui. The mean value of an LS from the D-Set was 43.9; so there were apparently 14 tuning-points to be gained in shifting from an LS-form to an SL-form...a move, of course, which is seldom possible. Still, in a cascade of tuning moves involving several primitives and many affixes, these 14 points are occasionally among those earned. The average difference in the values tabled in the SL and LS subtables of Table 3 reflects this only occasionally useful tuning factor. As between the C and D words, the 2 competing varieties of the long-short complex had mean ratings of 47.7 and 43.9, a difference in favor of the C-words with their additive Hyphen N that is itself highly significant (P about .0001). However, the choice between hyphenation systems is not a tuning issue but a design issue. There are three engineering considerations which I'll discuss in Sec. 12 that argue for the 4-letter-plus-hyphen pattern of non-final term reduction and only one--a non-engineering one--that argues against it: it looks odd. But even that has a possible solution; see Sec. 14. The strong preference our subjects show for short-longs over long-shorts is not often a tuning issue, as I mentioned above; and it is never one in making a word from a given metaphor. After all, the long-shorts in the dictionary are so because there are no short-shorts for them; and if no short-short is possible, how can there be a short-long? Still, this apparently strong aesthetic (or is it semantic?) preference is, or should be, a factor in metaphor selection. A metaphor that will yield a menka'tma-type word is apparently greatly to be preferred over one that will insist on a ku'nerdui-form. There is another and more useful tuning-factor to be found among these unreduced words. That is the definite advantage that the CVC-affix has over the CCV-affix (both varieties lumped) as the initial term in a short-long. The difference is 3.2 tuning points (P about .02); and that coupled with the weaker advantage that CVCCV-prims have over CCVCV-prims as the final terms in these words (1.4 points, but not significant) probably makes the family of words to which menka'tma belongs literally "the most gorgeous complex predicates in the language": average rating = 59.2. By the way, CCV forms enjoy no comparable advantage over CVV-forms as last terms in long-shorts. That is, ku'nercli-types are not nicer than ku'nerdui-types. In fact, if anything, the monosyllabic Cvv's, at least, get slightly better ratings than the CCVs in this position...perhaps because they reduce the consonant-burden around this joint. So the TT1 pattern of the CVCs being best of all and the CCVs often being no better than the CVVs (and sometimes worse) is also holding up. 11.6 Preference Patterns Among the Short-Shorts (SSs): Please look at the subtable labeled SS in Table 3 for this one. An analysis of variance showed that the interactions between the affix-types of the first and final terms of these 6-letter words are significant when only the three main affix-types (CCV, CVC and CVV) are considered (P about .02). But so are the row and column effects (first and final affix) of these same affix-types taken separately (although more weakly; P about .05). Adding in the two across-the-board effects we have already identified—the effects of naturalness on the CCVs and of syllabicity on the CVVs—produces the numbers you see in the SS table after rounding. In short, what you are looking at in that table are the combined effects of four factors working separately, each factor having been independently established as a statistically reliable predictor of word-goodness. In a sense, the entire table is significant. The results? The 3 prettiest types of short-shorts are without question the 00's (e.g., mre'cli) at 56 points, the 20's (e.g., ma'mcli) at 55, and the 24's (e.g., ka'mbei) at 54. With a 2-point spread, there is little to choose between them. They are all word-forms that our loglanists, on the average, apparently find, on the average, especially pleasing. (The double qualification is necessary, of course, because it is the average loglanist we are talking about as well as the average word in each form-class so-scored. Still some stable properties of both sets of objects seem to be punching through.) We now drop 2 points to what turns out to be the average of the distribution of tuned 6-letter words: a score of 52. There are 2 forms that earned this average: the 21's (e.g., du'rfro) and the 01's (e.g., gre'dru, 'grease-do'). Then dropping below the average, we have, first, mre'fua, mamse'a and tue'dji-type words at 50, the dru'mro-type at 49, saa'dja at 48, mrefo'a at 47, the dru'sei and tei'dru-types at 46, and the least attractive of the short-shorts, apparently, are the snali'i and mou'dru-types at 44: affix sequences 13 and 31. Inevitably, given our tuning factors, the worst sequences combine the worst affixes: the disyllabic CVVs (3's) with the unnatural CCVs (1's) in both orders. Now if your own ear tells you that most of the scores in this long series, as you moved from 56 to 44, were in some clear sense "deserved", then these words are probably pretty good representatives of their form-classes. (And you are probably a pretty typical denizen of the Lo-beast who told us what the form deserved.) But remember that there is some variance left over to bounce around within the form-classes. Not all 00's are equally "lovely", of course. The phonemes themselves add their
bits. Nor or all 13's or 31's equally "ugly". But the remarkable thing about this table is that every number in it is supported by 3 or 4 independently significant factors. We cannot be sure that the interpolations between them are correct, of course. But apart from some extremely small, untabled interactions, they are bound to be approximately correct for this sample of judges...whose tastes, we have learned, were remarkably similar to those of the more numerous sample who were given the far uglier words of TT1 to judge. Apparently something is pretty stable about word-handsomeness: both in time, across different affix sets, and with substantially different subjects. 11.7 Preference Patterns in Reduced 3-Termers (SSSs): Unlike the SSs, in which the interactions between terms were stronger than the main effects of the first and final affixes taken separately, among the SSSs there are no measurable interactions between terms. Nearly all the variance in the ratings of SSSs is accounted for by adding up the effects of affix-type on each term taken separately. The middle term makes the greatest contribution to the score (P about .01), with both CVC and CCV forms in this position adding about 6.5 points more than Cvv-forms do. (Only monosyllables were allowed here...a restriction I have since lifted.) The last term has the next greatest effect on the rating of an SSS (P about .02), with final CCVs (both kinds lumped) yielding about 3.3 points more than final Cvv's, which are, in turn, about 4.4 points better than the disyllabic CV'Vs in this position ... an effect more than twice as large, in the final terms of these 3term words, as the general effect of syllabicity on a CVV. So the greater value of a Cvv over a CV'V as the final segment of an SSS, ordinarily worth 2 tuning points and here 4.4, has been handled directly by the table in the case of the these reduced 3-term words. Finally, the first term has the smallest effect on the rating (P about .05) with initial CVCs adding in about 3.7 points more than CCVs do in initial position. In addition to these TABLE 3. TUNING TABLES Word-Scores Used in Tuning the Affix Set | _ | _ | | | | | | |----|----|----|-----|----|---|---| | 2- | T' | aγ | m e | ٦r | 9 | • | | 2-Termer | `s: | WOI Q | -5001 03 | osed III | TOTTLE | 5 0110 | HIIIX Se | | | | |--------------------------------------|----------------------------|----------------------------|---------------------------------|--|----------------------------|---|---------------------------------------|--------------------------------|----------------------------|---| | I SS I | -0 | _1 | - 3 | _4 | tact | tic 1 | t 12 for p
r between
t 6 if bet | S's; | SL | -7v8 | | 0-
 1-
 2-
 3- | 56
52
55
48 | 52
49
52
44 | 47
44
50 | 50 an S & L. See Key to
46 symbols below.
54 | | | | 0-
 1-
 2- | 32
28
33 | | | 1 4- 1 | 50
 | 46
 | -2 | [| LS | | - 0 | -1 | - 3 | _4 | | 3-Termer | 's: | | | 5x,6 | х,7у, | Ву - | 20 | 16 | 17 | 19 | | SSS I | | |
-S | | S |
SL | | SLS | -L | - [| | SS- | -0 | _1 | - 3 | _4
_4 | l –7 | v8 | |
 S-S | l-5v6x- | -7v8y- | | 00-
 01-
 02-
 04- | 82
79
81
74 | 79
75
78
71 | 73
70
75
68 | 75
72
77
70 | 5;
 4;
 5;
 4; | 9
2 | | 0-0
 0-1
 0-3
 0-4 | 53
 51
 48
 49 | 53
51
-* | | 10-
 11-
 12-
 14- | 79
75
78
71 | 76
72
74
67 | 70
66
71
64 | 72
68
73
66 | 50
 41
 40
 40 | 7
9 | | 1-0
 1-1
 1-3
 1-4 | 51
 48
 45
 47 | 51
48
-
- | | 20-
 21-
 22-
 (23- | 85
81
85
76
78 | 81
78
81
72
74 | 76
72
76
68
70 | 78
74
78
70)**
72 | 5:
 5:
 5:
 4: | 1
3
- | | 2-0
 2-1
 2-3
 2-4 | 55
 52
 49
 50 | 55
52
-
- | | LSS | L |
- |
 | rev. | |
 | -
 | | | | | -SS | 5v6x | 7v8y |
 | KEY | | | L,LSL,LLS

S | | S is in: |
 | | -00
 -01
 -03
 -04 | 55
52
49
50 | 55
52
-
- | L = 1
S's:
0 = n | hort affi
ong affi
at'l CCV
nnat'l C | x |

 | 0
1
2
3 | 1st
 25
 24
 26 | 2nd
26
25
26 | 3rd

26
25
-
24 | | -10
 -11
 -13
 -14 | 52
50
46
48 | 52
50
-
- | 3 = d
4 = m
L's:
5 = C | isyl'c C
onosyl'c
CVC | CAA | | 4
ng scores | | 24

spond to | 24

10 X the | | -20
 -21
 -23
 -24 | 54
52
49
51 | 54
52
- | | CVCV
VCCV
ens:
r n 1/ | , | original tastiness ratings. Thus '55' = '5.5' on the original 11-pt. scale. The correspondence makes sense, however, only when applied to 2-termers. Thus the average value | | | | | | -40
 -41
 -43
 -44 | 50
47
45
46 | 50
47
-
- | | |
e. | of an S in both 2- and 3-termers in these tables is 24.82. So the tuning value of an average SSS is worth 150% of an average SS. The raters did not, of course, see things this | | | | | way. ----- **Added later. three main effects, the general 3.4-point superiority of the natural CCV over the unnatural one was also interpolated into the SSS subtable, after taking account its very different distribution among the cells of the SSS table. The result? The 220's and the 200's are, at scores of 85, distinctly the most pleasant reduced 3-termers: say, matsu'ncli and matsni'cli (both concocted). At the other end, the 143's are predicted to be most disagreeable: say snakiase'a (again, concocted; but from real affixes). I suspect that this strong aversion to vowel-rich complexes among our loglanists may be temporary...more temporary, say, than the weaker but definite aversion they display to unnatural CCV's, which, involved in the decipherment task as they are, is likely to be a semantic matter, and so more stable. In any case, I will let the reader work out--or find among the Remade Complexes--instances of the numerous intermediate scores in this large table. Other subtables in Table 3 are derivations of the main ones. 11.8 Tuning the D-Set and Measuring Coverage: The subtables of Table 3 provided the instrument by which the D-affixes were tuned into the shape in which you find them. There were, incidentally, four "tuning passes", with one exception of successively smaller net effects. On Pass #1, which was focussed on removing as many occasions for phonotactic hyphens as I could melt away--using the new TT4 tables, of course, to define the "bad joints" which call for them--I managed to add 1207 points to the 102,000 sum of scores with which I started: a 1.2% increase. On Pass #2, which was a struggle for coverage, I managed to add 452 more points: a 0.4% increase over the previous sum. On Pass #3, only 146 points were added (I forget what I was doing, but it didn't work); only a 0.1% increase. And on Pass #4, on which I finally relented and remade some rather awkward primitives, I added 359 points, a 0.3% increase; and so ended with a total sum of 104,164 points: a 2.1% increase in the average tastiness of a word from the time tuning began. And I, at least, could taste the difference. The words really had become quite pretty to me during the course of all this massaging. But perhaps that is a phenomenon like the loved-one's face: you keep looking at it and it gets more beautiful, willy-nilly. Coverage, which is quite a different matter, although related—and perhaps a more important measure of the success of the entire GMR project—increased from 93.6% to 95.0% during the course of the tuning operations. That amounts to a 1.5% improvement in coverage by the D-Set, and has brought the tuned D-Set to within a very small margin, at 95%, of matching the 97% coverage (by undecipherable affixes) found in the 1975 dictionary. (Coverage is measured over all the terms of all the complexes listed in that dictionary...except the -sensi words, which are not counted.) Tuning reduced the initial coverage gap between the trial D-Set and the 1975 dictionary by about 40% (1.4/3.4). I do not think much more than that can be accomplished...except by remaking a very long series of additional primitives (which I do not want to do). For these would now be words of both low and diminishing power and so, would have small and diminishing effects. Still, the first 2 or 3 terms of this series might be worth tackling. (Sange, or one of its competitors, would be the first; klini, or one of its, the second. It is also possible that the fasru/fasli squabble over fas should be dissolved.) I am perfectly willing to remake any or all of these if the loglanists wish me to. Probably no feature of any language has ever been engineered in quite this way, including computer ones. When I find myself doing this kind of thing I console myself with an observation of Francis Bacon's: "Things which have not been done cannot be done except by means that have never yet been tried." And who knows? It just might fly. - 12. 4-Letter vs. 5-Letter Non-Final Affixes: This is the issue, of course, that was presented in TT5 as a repeated choice between "Hyphen R" and "Hyphen N" words. But the morphological choice was really between the 4- and the 5-letter form of the non-final affix. There are three good engineering reasons why the 4-letter form will make a better language, and none that it will make a worse. Some you have no doubt already observed at work. But to review what I may have mentioned or you've observed: - (i) If built with 4-letter non-final affixes, the unreduced words of the language will, for the
first time, be acoustically shorter than their metaphors. Thus, sanprdja'no is measurably more quickly spoken than sa'npa dja'no, with its 2 stressed syllables and an extra full vowel. To make Zipfean psychobiological sense to a speaker, the move from the metaphor of a new concept to the first form of its complex must mean increased biological economy or da won't make it. Why should da? If we were to use, in contrast, the 5-letter form plus hyphen, getting sanpardja'no (r makes a better hyphen), the first complex would actually take longer than its metaphor to say. Not only that, but it looks longer and takes just that much more energy to write or type. So there is a definite loss of economy with the 5-letter form, and a distinct gain in economy with 4-letters. - (ii) The hyphen between the 4-letter term and the rest of the word looks and sounds like exactly what it is: a semantically negligible component of the word...a bit of morphological "glue". In contrast, the par (or the pan) in the hyphen-augmented right-half of the 6-letter form above looks like just another CVC-form affix. This is definitely misleading to the decipherer. It takes a double-take, and a good deal of intimate knowledge of the affixes, to see--or decide, finally--that it is not. This is a further loss of economy for the 5-letter plan: added decipherment time for that quasi-CVC. - (iii) The 4-letter form, while shorter than the original primitive, loses no information. After unpacking, no pair of primitives in the language (except the spani/spano nationality/language pairs), will differ only in their last vowels. This is redundancy; and redundancy is fine so long as the primitives are moving about separately. In fact, we have needed more redundancy in the simple predicates of this language for a long time. After unpacking, we now have it. But when a primitive enters a CPX, becoming part of another word, redundancy is just what it can afford to lose. The 5-letter affix preserves the whole, often redundant original form. But it does so uselessly, and therefore wrongly, from an information-theoretic point of view. In contrast, the primitive being compressed into the 4-letter form seizes, in a manner of speaking, the opportunity given by its redundant vowel to drop some redundancy as it enters the more informative (because longer and less probable) context of the complex word. This is yet a third gain in biological economy for the 4-letter plan. These arguments add up to something pretty decisive from an engineering point of view...no matter how our loglanists responded. Besides, there is good reason to expect that the aversive response they displayed toward 4-letter forms will turn out to have been ephemeral. Aversion is likely to diminish fairly rapidly as the engineering advantages of the 4-letter forms begin to impinge on their experience. After you have driven a high-performance car it doesn't matter that it is (was?) painted mauve. Alright; what was wrong with "Hyphen R" and its associated 4-letter affix? What was mauve about it? Something pretty clearly was. The answer, almost certainly, is that it looked odd. In its neighborhood, it made the language look Polish. There are two possible solutions to this. One, we can wait for habituation to take over...wait for those consonant-surrounded letter 'r's to begin to look like the soft little sounds they are. Two, we can use another, or an alternative, letter. We'll consider our options in Sec. 14 on Consonant Buffering. or both of the neighboring consonants is already r. In these contexts, n is used. So n is the "secondary allomorph" of the intraverbal hyphen. Such contexts are fairly rare. I haven't calculated the frequency of n-glued joints in the dictionary, but it just now took me five minutes to find one. Have a look at the Remade Complexes. You'll see that it takes some time to locate a hyphen n in a D-Set word. The one I found was in letrnli'sta = 'alphabet', an unreduced word. As you've heard (if you pronounced it), there's no difficulty with the pronunciation of this -trnl-. There is still that nice vocalic r sound-or that schwa--tucked away between the t and the n. Here's another: spo'rncli, 'spring-like', and spo'rnvoi, 'spring-jump', both rather pretty words. In these two words, the r is not vocalic; but even so, both the triplet and the quadruplet, led by r in each case, are remarkably easy (for us) to say. What if the joint to be hyphenated has an **r** on one side and an **n** on the other? Then the tertiary allomorph **l** is used. I can't find one of these at all. And there may be, at the moment, none in the language. (One that did occur during tuning was so unlovely, however, that I remade a primitive to get rid of it.) These -**rln**- or -**nlr**- words may be difficult. Here's a concocted one: 'line-recline' (if that means anything) is **clina resto**, and that yields the unreduced form **clinlre'sto**. The -**nlr**- is definitely pronounceable; it is now the encased **l** that is vocalic. But some of the -**rln**- sequences, as I say, may verge on the monstrous. Is any difficulty caused by the fact that r is also the primary allomorph of the hyphen used to attach certain privileged operators to CPXs? Not much. The hyphen here is part of some rather nice, preempted CVC-forms, all r-final, of course (see the CVC Assignment Table). For example, one is used in nerdru, 'one-do'. The fact that in r-followed contexts such r-final CVCs may be replaced with their n-final secondaries gives us a choice rather than a problem. The choice is the word-maker's, of course, or perhaps between CPX-making strategies in general. Take 'one-rule' as a relevant concoction. (rui is from rulni, once gruni.) Ner + rui won't work unless we doubly hyphenate it...as we may, of course, getting ne'rnrui. Or we may choose to make nen regularly available as an allomorph of ner; and then ne'nrui will work for 'one-rule'. Are problems caused by the fact that nen is also assigned to nenri (former lenri)? Not insurmountable ones. All it means is that, if we adopt such n-final secondaries, we give them privileges. Those privileges will be withdrawn from the primitives that just happen to have n-final affixes (the asterisked cases in the CVC Assignment Table). Thus, if nen+r.. is always to mean 'one', then nen from nenri may never be used with following r. In particular, nen may not mean nenri in ne'nrui. Does this mean that nenri rulni ('in-rule') may never be expressed as a CPX? No; we can always hyphenate it as ne'nlrui. So we can go two ways on this one. Either we can decide that all the n-final secondaries of the preempted CVr-forms (the asterisked cases) may never be used in the context of following r; or we can decide that the common ones like nen from nenri may be, and that in these cases—or in all such cases, for that matter—the operator—bearing CVr—form will carry a double hyphen. The consequences for this particular case would be that, on the first strategy, ne rulni would get ne'nrui, and that nenri rulni would get ne'nrui...a bit awkward, perhaps. On the second strategy, 'one—rule' would be ne'rnrui and 'in—rule', ne'nrui. The choice seems clear here; but the matter can best be resolved by studying use—frequency over more cases...in fact, over all relevant cases. I invite some patient student of the new morphology to solve this problem for us. I would loan da my Eaton (a five—language word—frequency dictionary). 14. Consonant Buffering: We have all heard the Italian-American character in the movie say 'That's amy boy.' Perhaps fewer of us have heard the Japanese person, faced with the same formidable consonant-clusters of English (tsm in this case), buffer them in approximately the same way...perhaps using a slightly different "buffering vowel". Loglan is a language meant to be usable, and so, speakable, by anyone on this planet. Inevitably, and wherever it indulges in them, its consonant-clusters will be buffered by those who cannot speak them any other way. I propose we welcome this event, and prepare for it. There are now two stories about the sound-rhythms of Loglan...in fact, there always have been. In its strings of little words it is a smoothly alternating consonant/vowel, or consonant/vowel-group, language. But inside even its simple predicates there is always at least one consonant-pair, and in its complex ones, old or new, there are often vowel-singlets alternating with consonant-doublets, and even with occasional triplets. Probably the "consonant load" on the predicates of the new morphology is a little less than it was in the old one just because of the new CVV-form; but it could be made to be much less. (It would be much less, for example, if we used Cvv's wherever we could use them—see my comments among the Remade Complexes—which is something worth thinking about.) So it is in the predicates and the predicates alone that consonant-buffering will be needed, and will occur. We now have a 6th vowel...actually, it's a 7th; we have always had vocalic r for use in names. Suppose we took the two vocalic allophones of our current letter 'r' and gave them to a 23rd letter. What "23rd letter"? What do we have left in the Latin (i.e., Western European) alphabet? After recently taking up 'h', we have 'q', 'w', 'x' and 'y' left. Two of these are strongly associated with consonantal sounds and could hardly be used to represent any vowel. (Imagine telling anyone that 'x' was a vowel!) But two of these letters, 'w' and 'y', often represent semi-vowels, and one of them, 'y', sometimes stands for a full vowel: for example, as in English 'happy'. That vowel (/i/, or /i/ in some dialects) is not either of our two homeless ones, to be sure, but it is a genuine vowel. What would **mekykiu** look like to you? How would **kuncydui** and **rodjymadzysensy-madzo** look, to take some more formidable cases? If we understood—who are going to promulgate this orthography if anyone does—that either vocalic **r**
or schwa may be heard wherever this new **y** phoneme occurs, that the British and Bostonians are going to be using schwa for it, and the rest of us reading this Notebook are probably going to use r, then would it matter that we have "borrowed" a letter for this pair of sounds that never means either of them in any other language? Possibly not. But there is a better plan. Why not adopt 'y' for schwa as an alternative to r, and continue to use 'r' for both its vocalic and consonantal values? I'm not sure that 'mekykiu' looks any less odd than 'mekrkiu'. One of them tempts me to use schwa, the other, vocalic r. If we had both letters in our alphabet, we could spell out this dialectical variation clearly. Mekykiu would be 'eye-doctor' in the British and Italian dialects of Loglan, and in many others; and mekrkiu would be a North American dialectword for the same concept...just as Pidr and Pitas are different versions of 'Peter' now, and R1 and Y1 may soon be American and British Earls. So much is fun because dialects are fun. But what really matters is that we would then be prepared to take consonant-buffering nakedly and boldly into our language. Not in some second-rate, essentially unspellable version of Loglan, as Lower East Side Manhattan is "unspellable American", but in mutually intelligible and mutually legible dialects of a language that lived as happily on one side of an ocean as on another. For now either of these sounds could be used for consonant-buffering, either to buffer the joints that are "difficult" in every dialect—our "phonotactic hyphens"—or gratuitously and dialectically to ease the consonants at any joint-like place in any word, whether it was complex or not. Thus we could have matyma from Japan, perhaps, and matrma being used someplace else. And both words would be as good as matma is for all our mothers. And if a Japanese loglanist chose to write our word sporncli ('spring-like') as sypornycli, or even as sypornycyli, and speak the latter as /syPORynycyli/, wouldn't we understand da? In both speech and writing? (Sequences of schwa-syllables are certainly not uncommon in English speech.../FORtcynytli/, using this handy new schwa.) Such clearly identifiable audiovisual buffers, however sprinkled between the consonants of the language, would give neither the resolver nor the lexer the least pause. For both y and interconsonantal r would then be "dummy phonemes": the ones that don't count morphologically. And the ones you forget about when you're looking things up. It just might fly. 15. What You Can Do: You can let me know whether you think I ought to carry on remaking prims, about how many, and in fact which ones. Do any unserved ones strike you as especially deserving? You can also let me know if any of the new prims bother you. Do you think any should be re-remade? Or even un-remade? And please identify any CPXs in the present list that strike you as especially ugly. Suggest alternative ways of making them if you can. And if you see a way of improving scores by shifting affixes around, just let me know. (Of course you can also let me know the things you like about the affix set as well.) Please put all your suggestions on separate 3x5 index cards. I'll execute any clear improvements and act on any consensuses that emerge. Until the new dictionary goes to press, we can make any changes we like in our word-making tools, primitives and affixes alike. But after that? They're likely to freeze. So whatever polishing we're going to do had better be done now. You can also volunteer to be one of the word-makers on a "shakedown cruise" I plan to take with the new affixes during the next six months: grinding out the next 2000 concepts on the Eaton List. (It was tuned on one set of 2000; it should be tested on another...to get any oddities from the first set shaken out.) Doubling our CPXs will also enrich our dictionary, of course. But that's less important than sending the affixes themselves out into the world of meanings they'll eventually have to deal with. So if anyone wants a share of those 2000, let me know. The work will have to be coordinated, of course. There are many other things, of course, that an individual can do. You can extend and prove the set of 1 mod 3 residuals, for instance. Or you can study the CVn-before-r problem exhaustively. But these are the main ones: to help me put a final polish on the affix-set, and to shake them down by sailing through the next 2000 concepts with them. 1797 Terms Covered #### CVC-ASSIGNMENTS - Part 1: BAB to LUL Shows Number of Terms Covered by Each Affix (...) = later assignment. [...] = Preempted. --B --C --D --F --G --J --K --L A - BAlCi 2 BADlo 1 - BAdJo 1 BAKto 2 BALpi 2 E - BEDpu 3 - BEGeo 2 - BEKti 3 BEkLi 1 I - BIlCa 7 BIVDu 1 - - - BILti 4 B- I - - CEDzu 2 CEFli 3 - - CELna 1 - - CIDja 3 - - CIKtu 2 CItLu 1 - - - - - - - - COLku 1 A CABro 2 -CI 0 U - - - DEDjo 4 - - DEdJo 1 [DEKto] DEnLi 3 E D I - (DItCa) -٥ A FAlBa 1 - FAnDo 7 - FAGro 5 - FALji 6 E - (FErCi) FElDa 2 - - FEKto 2 FELda 1 I FIBru 2 - FIZDi 2 - - FIKco 1 FILmo 10 F I FIBru 2 - FIZDi 2 - FOlDi 1 -- FOLma 3 - FutCi 2 -- GAnCu 3 GAnDi 4 -- - GAnLi 1 - [GIGdo] GI - GOKru 1 -U GUdBi 2 - GUDbi 16 -A - - HArDu 4 HAsFa 2 - E HErBa 5 - HEDto 4 - - - HIDro 1 - -- [HEKto] HELba 2 H I - HOLdu 4 0 U - JAGlo 8 - - dJALe 1 A E 2-- 3 _ dJELa 2 J I - * _ = JOK1a 1 _ JUGra 2 _ dJULa 3 0 A - KAnCe 1 KAmDa 1 KAsFa 5 - - KAKto 18 KApLi 17 E - KECri 4 - - - KErJu 1 - - - KICmu 1 - - - KICmu 1 [KILto] O - KOrCe 4 - KOmFu 5 - KOrJi 2 KOKfa 2 KOLro 4 U KUBra 2 KUnC1 1 - - - KUKra 9 -KAKto 18 KApli 17 E K I L I LUnLi 1 # CVC-ASSIGNMENTS - Part 2: BAM to LUZ 1360 Possible 476 Assigned ----- Coverage Figures are Before Tuning *Must not be used with following r. 35% Used --N --P --R --S --T --V --Z BAlMa 2 BANci 2 BAtPi 2 BARma 4 BASni 1 BATmi 1 - A - BENdu 2 - BERti 3 - BETcu 4 - E - - - BONgu 1 - BORku 1 - BOTsu 3 - O BUNbo 1 - BUSte 1 - D ------- CANse 8 CAPri 2 CARbo 3 CASlo 2 CArTu 1 CAVle 3 - A - CENja 6 - (CERsi) - CETlo 4 - - E CIMra 3 CINta 5 - CIRna 2 - CISTi 6 - - I COMtu 1 CONdi 6 - CORta 9 - COmTu 2 - - O - CUPri 1 CURca 4 CUtSe 2 CUTri 9 - U DAMni 6 DANci 8 DAsPa 1 DARli 3 DASpa 2 DAnTe 3 - - A - DENro 2 - DETRa 3 [DESti] - - - E - DIPri 2 DIRco 5 - DITka 1 - - I - DONsu 2 - DORja 8 - DOTra 3 - - O - DUrNa 1 DUPma 2 DURzo 18 DUStu 2 - DUVri 2 - U FAMji 2 FANra 3 - FARfu 7 FASru 3 FATru 4 FAnVe 17 - A FEMdi 8 *FErNu 2 - [FEr] FESti 1 FErTi 2 - - E - - FItPi 3 FIRpa 3 - FITpi 3 - FIZdi 2 I FFOrMa 22 - - [FOr] FOSli 6 FOTli 10 - - O FUMna 2 - - [FUr] - FUTci 10 - - U - GANta 26 - GARni 23 GASno 1 GArTi 1 - - A - GENza 6 - - - GETsi 1 - - E - GINru 1 - - - - - - - I GGOMni 1 - - GOtri 2 GOtso 3 GOTso 11 - - O - GUNti 10 - GUtra 2 GUSto 2 GUSTo 2 - - U HARMO 3 HANCO 9 HAPci 10 HARKO 1 HASfa 7 HATro 4 A HERfa 1 E HIRti 2 I HOMpi 2 HORma 3 HOSpa 1 O HUMni 4 HUmni 3 HUTri 1 U - JANto 3 - JAnRo 2 - - - A - - - - - dJETa 5 - - E - - dJIPo 3 - - dJITu 4 - - I - - JORta 1 dJOSo 2 - - - O - - JORta 1 dJOSo 2 - - - - #JUNti 3 dJUPo 1 [JUr] - - -KAMla 5 KANmo 1 KAPni 7 KAmRa 4 KArSa 2 KATli 8 - A KEMdi 4 KENti 4 KERti 4 KETli 1 E KINci 12 sKIZo 2 I K KOMcu 1 KONte 2 KOPca 3 KORti 9 KOnSu 1 KOrVa 4 O KUMtu 4 KUrNi 3 KUPta 3 KURfa 6 KUSmo 5 KUVga 4 U - LANdi 5 - LARte 5 LASti 1 (LATci) - - A - LENgu 3 LElPi 1 LERci 1 [LESta] LETci 3 - LEdZo 1 E LIMji 2 cLINa 8 - fLORa 3 LISta 1 LITla 3 cLIVi 21 - I - - - - [LUSta] [LUSTa] - - O PLUMa 2 (LUNla) - - - - U # CVC-ASSIGNMENTS - Part 3: MAB to ZUL | | | B | C | D | F | G | J | K | L | |-----|-----------------------|------------------------------------|--------------------------------|-------------------------------|-------------------------------|-----------------------|-------------------------|---------------------------------|---------------------------------| | M- | | - | - | MADzo 14
-
MIDju 8 | - | [MEGdo] | -
MIdJu 1 | MAnKo 4
MEnKi 4
[MIKri] [| MErLi 3
[MILti] | | | O
O | MUBre 4 | MOtCi 1
MUtCe 10 | | - | - | | MUrKi 2 | | | N- | I
0 | NABle 3
NErBi 3
-
(NOtBi) | sNICe 2 | (NIrDa)
NOrDi 2
- | | NEGda 2
NIGro 1 | (NErJi)
-
(NOrJi) | NIKri 1 | NIrLi 4 | | P- | | sPEBi 6 | PAtCe 2
PEtCi 2
PInCa 1 | PAzDa 2 | -
-
PIFno 3 | -
-
- | -
PEnJa 2 | PASKo 3
[PIKt1]
-
- | sPALi 6 | | R- | Ü | EDED- 2 | REtCa 6
RItCo 1
bROCu 2 | REDro 1
RIDle 1
bRODa 3 | RESFu 3
ROFsu 4
tRUFa 1 | bRIGa 2 | ROdJa 7 | dRAKa 2
bREKo 1
bRIKi 1 | tRELu 1
bRILi 3
ROLgu 7 | | | A
E | -
SImBa 1 | SAtCi 11
SEKCi 2
SItCi 4 | SOlDa 2
SUnDi 2 | SAlFa 3 SItFa 3 | - | -
-
- | SAK1i 2
SEKta 2
-
- | SELji 20
SILtu 2
SOcLi 11 | | T- | | TOBme 3 | - | | | TArGo 3 | - | TAKna 13 | TErLa 3
TrILi 1
TrOLi 1 | | V- | A
E
I
O
U | -
-
-
-
- | -
-
-
-
- | VAlDa 1
VEDma 4
VIDre 3 | -
-
-
- | -
-
-
-
- | -
VIdJu 3
-
- | -
VIzKa 2
-
- | VAtLi 8
-
VOLsa 3 | | Z- | A
E
I
O
U | -
-
-
-
- | -
-
-
-
- | -
-
-
-
-
- | -
-
-
-
- | -
-
-
-
- | -
-
-
-
- | -
-
-
-
- | -
-
-
- | | Num | ber | of Affixe
B
17: 42 | C | D | F | G
12: 41 | J
12: 23 | к
30: 96 | L
50:218 | ## CVC-ASSIGNMENTS - Part 4: MAM to ZUZ | M | | N | | P | | R | | S | | T | | V | | Z | | | <u> </u> | |---------|---|------------|-----|----------|---|------------|----|--------------|----|---------------|-------|----------|----|--------------------|-----|--------|------------| | MAtMa | 2 | MAlNa | 1 | | | MARka | 2 | - | | MATma | 5 | | | _ | | Α | | | - | _ | MENdi | | | | MERji | | | | METLI | | - | | _ | | E | | | _ | | | | | | [MIRdo] | | | | | | - | | - | | I | M- | | _ | | | | | | MORto | | | | | | MOdVi | 4 | MOnZa | 2 | 0 | | | _ | | _ | _ | | | MURsi | |
| | | | | | | | ប | NAMci | 7 | [NANti] |] | _ | | NAtRa | 2 | | | NATli | 3 | - | | NAdZo | 7 | A | | | - | | *NENri | 17 | _ | | [NEr] | | NESta | 1 | NETre | 2 | NErVi | 2 | (***) | | E | | | NIMla | 8 | *NIrNe | 2 | - | | [NIr] | | | | NITci | 1 | 0-0 | | - | | I | N- | | NorMa | 1 | - | | - | | [NOr] | | - | | NOTbi | 13 | - | | • | | 0 | | | NUMcu | 8 | - | | - | | [NUr] | | - | | - | | _ | | NUZvo | 3 | U | - 1 | | PANba | | | | | | | | PATpe | | | | PAdZi | 1 | | | | - | | PENso | | | | PERnu | | | | PEnTa | | - | | - | | E | _ | | - | | PINti | | | | [PIr] | | PISmi | 3 | _ | | - | | | _ | I | P- | | - | | PONsu | | | | PORli | 6 | - | | | | - | | POZfa | 2 | 0 | | | PUbMu | 1 | PUNtu | 5 | - | | PURda | 10 | - | | sPUTa | 3 | - | | - | | U | | | | | | | | | | | | | | | | | DA7 | | | | | | | *RANta | | | _ | | | | | pRATi | | | | RAZnu | - | | | | | | | | | 3 | [REr] | | | | | | | | fREZi | | E | | | | 2 | RINta | 2 | = | | | | | | • | | | | pRIZi | | I | R- | | - | | _ | _ | - | | [ROr] | | ROfSu | | - | | - | | mROZa | • | O
U | | | - | | gRUNu | 2 | - | | - | | pRUSa | | RUTMa | 2 | _ | | | | U | | | SAMEO | | | a . | CADIa | 1 | SARni | 3 | Sansa | 6 | SATro |
1 | | | | | A | | | - | | | | | | [SEr] | | | | SETci | | | | | | E | | | | | SINma | | | | | | | | SITfa | | | | SIdZa | 1 | Ī | S- | | SOrMe | 2 | *SONda | 7 | _ | | [SOr] | | | | S01Te | | _ | | - | | ō | _ | | | | SUNho | | | | SIIRla | 2 | _ | | | | SUrVa | 5 | - | | Ü | TArMu | 7 | TrANa | 2 | _ | | TARCI | 4 | - | | - | | - | | - | | A | | | _ | | #TENri | 1 | TEP1i | 5 | [TEr] | | - | | TETri | 3 | - | | _ | | E | | | _ | | TINmo | 1 | - | | sTIRe | 2 | - | | | | - | | - | | I | T- | | - | | *TOrNi | 1 | _ | | [TOr] | | - | | TOTnu | 2 | TOVru | 3 | - | | 0 | | | ((=) | | - | | - | | TURka | | - | | | | - | | - | | ប | - | | | | | | (VApRo | | 0 | | : | | - | | (S-1) | | A | | | - | | #VENdu | | | | [VEr] | | | | | | - | | 6=0 | _ | E | | | - | | VINjo | 7 | - | | VIRta | | VIrSa | | | | - | | VIZka | 8 | | V – | | - | | - | | - | | [VOr] | | - | | VOlTi | 1 | - | | · | | 0 | | | - | | - | | _ | | - | | - | | - | | - | | ((-)) | | U | | | | | 7 4 - 27 - | | | | | | 47 40- | | | | 7 4373 0 | 16 | | | | | | - | | ZAvNo | 2 | - | | - | | dZASo | 2 | - | | ZAVlo | 10 | | 100 | A
E | | | - | | - | | - | | - | | - | | - | | - | | _ | | Ī | Z- | | - | | - | | - | | - | | - | | _ | | - | | <u>-</u> | | 0 | 4 - | | - | | - | | - | | - | | - | | _ | | - | | _ | | ซ | | | _ | | - | | <u>-</u> | | | | - | | <u>-</u> | | | | | | | | | | | AT | | | | | | - | | Tr | | V | | Z | | Tota | als: | | M | | N | | P | | R
47:23 | 7 | | | | | | | | | 476. | 1707 | | JT : 14 | J | 77:20 | , | 20: 5 | ₹ | 71:63 | 1 | اانان | -7 | 75.10 | , , | 176 7 | 1 | 15. 4 | _ | ., | 1121 | CVV-ASSIGNMENTS - Part 1: BAA to LUU By Monos: 950 By Di's: 470 1420 Terms Covered; 67% by Monosyllables Terms: 1420 | Т | erms | : 1 | 1420 | | | | | | | | | •• | | |----|-----------------------|-----------------------|---|-------------------------|------------------------|--------|---|-------------------|-------------------------|------------------------------------|-------------|--|-----------------------| | | | | A | | E | | I | | | 0
BAKSO 6 | | U
 | - | | В- | A
E
I | | - | 1 | | 5
3 | BAlcI
BErtI
BIltI
BOtcI
BUlbI | 3
10
4
3 | | BAksO 6
BEgcO 10 | | BEndU
BIvdU
BOtsU
BUKCU | 2
6
5
2 | | | U | | | | | | | 21 | | CAbrO | 1 | - | | | C- | A
E
I
O
U | | CEnjA 5
CIrnA
COrtA
(CUrcA) | 7
2
1 | - | 2 | CAnlI
CErsI
-
CUtrI | 3 | | (CEt10)
CIrzO
-
CUndO | 1 | (CEdzU) CIktU COmtU - | 3
1 | | D- | A
E
I
O
U | | DAnzA
DEtrA
DItcA
(DOrjA)
DUrnA | 5
7
5 | -
-
- | | DAncI
DEnlI
DIsrI
DUvrI | 2
9
3
7 | , | | 1 12 3 | DErtU
DIslU
DOnsU | 1
4
32

2 | | F- | A
E
I
O | | FAlbA
FEldA
FIrpA
FOlmA
FUmnA | 1
1
4
66
10 | (FAnvE)
-
-
- | | FAljI
FErcI
FIldI
FOtlI
FUtcI | | | FAndO
FEktO
FIlmO | 2 4 | FErnU | 1 | | G- | A
E | | GAntA
GEnzA
GOtcA | 1
1
2 | | | GArnI
GEtsI
-
GUntI | [| 14
2
5 | GOtsO | 40
 | GAncu
-
-
-
-
-
(HArdu |)

ft | | Н | A
E
 - I | :
: | HASTA
(HE1bA)
HIjrA
HOrmA | 11
1
3 | - | | HApc:
(HOmp
HUtr | I)
I | 3 | HArkO
-
-
-
- | | HOldu | | | • | J- | A
E
I
O
U | -
-
JOrtA
JUgrA | _ | - | | JAlt
-
-
JUpr | 8 | 3 | JAg10
*dJIp0
*dJUp0 | 5
2
4 | *dJIt(
-
- | | | |
K- | A
E
I
O
U | KAmlA
*cKElA
KOrvA
KUvgl | 2 | KAnce
-
KOrce | | KAt
KEC
KIn
KOr
KUn | rI
cI
jI | 17
2
1
7
16 | KAktO
(*cKEmO
KOlrC
KUsmC |) 5 | KAng
KErj
KIcm
KOmf
KUmt | ប 4
ប 1
ប 1 | | | | A
E
I
O
U | LAnga
LEtr
*cLIn
*fLOr
*pLUm | A 1
A 4
A 1 | LArt | € 5 | LAn
LEt
*cLl
LO | cI
[vI | 7
16
6
1 | LEnz(
LIkr(
-
- | | LItr | าบ 5 | ## CVV-ASSIGNMENTS - Part 2: MAA to ZUU *Medial derivation (cCVcV). 425 Possible 216 Assigned 51% Used | | | | | | *Wediai a | | - | | | | 717 0000 | - | |--------|----------------------|--------------------------------|--|--------------------------------|-----------------------------------|---------------|---|------------------|---------------------------------------|-------------|---|------------------| | | | | | | E | | I | | 0 | _ | U | | |
M- | A
E
I | | A
MAtmA
MEnsA
MIlfA | 2
1
5 | | | MAtcI
MErlI
MIplI
MOdVI | 9
9
1
3 | MAdzo 26
(MEtro)
MItro | 3
3
7 | MInkU | 2 | | | 0
U | | MOnc A | 3 | MUTCE | 1 | MUZgI | 2 | MUAGO |
1 | | - | | N- | A
E
I
O | | NAtrA
NEdZA
NImlA
NOrmA | 1
4
2
2 | NIrnE | 3 | NAtlI
NEnrI
-
- | 7 2 | NAdzO
-
-
-
- | | NUmcu | 5
 | | P- | U

A
E
I | | PEntA
POndA | 2 | PAtcE
-
-
-
PurfE | 5 | PArtI
PEtcI
POrlI | 27
2
4 | PAskO
PEnsO
PIfnO
-
PUctO | 3
6
1 | PErnU
PIskU
POnsU
PUntU | 8
1
7
6 | |
R- | - | J
A
E
I
O | PUrdA
*gRAsA
REtcA
*bRIgA
*mROZA | 7

1
1
3
3
6 | RANDE
#tRIME
#bRUTE | 1
2
1 | *tRAtI
REVrI
RI1rI
*gROcI
RU1nI | | *bRAtO
REnrO | ц
5 | RAtcU
*tRE1U
*sRIsU
*bROcU
*pRUtU | 1
1
2
1 | | S |
}- | U

A
E
I
O | RUtmA SAnpA SEtfA SItfA SOndA SUdnA | 13
11
23
8 | SAnsE
SormE | <u>4</u>
3 | SAntI
SEtcI
SImcI
SOnlI
SUndI | 15 4 | SAmtO
SIstO
SUnhO | _ | SIltU | 5 | | |
T- | U

A
E
I
O
U | TAKNA
TISTA
TOKNA | 27
A 8
A 6 | TArlE
*sTIrE
TObmE
TUglE | 2 | *sTAl
TEdj
TOgr
*sTUl | I 1 | TArg(
TIdj(| | TArmU
TEtcU
TIfrU
-
- | 3 | | | v- | A
E
I
O
U | VAln
VEdm
VIzk
VOls | A 1
A 3
A 6 | -:
-:
 | | VAti
VEto
(VId:
VOI: | eI 12
rE) | VEsl | .0 11 | VAlpt
VEndt
VIdji
-
- | y 1 | | | Z- | A
E
I
O
U | - | | -
-
-
- | | | | | | -
-
- | | | | _ | | | | | D | covered | | | | | 11 | Number of Affixes: Number of Terms Covered --E --I --A 60:142 20: 29 60:166 --0 38:352 --U 38: 59 TOTALS: 216: 1420 | - | Nat']
Unnat | ls: 925
c'ls: 279 | | | | | GNMENTS | | | | | ssible
signed | |-----|-----------------------------|---|-------------------------|-----|---|--------------------------|---------|---|--------------------------|-------------|---|--------------------------| | "Go | Total | l: 1204
Jnnaturals | * | | | | | nitial CC
by Natura | als | pecial | 68
Unnatura | % Used | | BL- | -A
-E
- I
-O
-U | BLAda
BLEka
BLIcu
BLOda
BLUdi | 3
8
9
7
1 | DJ- | DJAno
DJEla
DJIne
DJOri
DJUdi | 17
2
18
9
8 | KR- | KRAku
KREni
KRIdo
KROli
KRUma | 10
3
39
5
6 | SR- | SRIte
*SO/Rdi
*SU/Rna | | | BR- | -A
-E
-I
-O
-U | BRAna
BREdi
BRIze
BROko
BRUdi | 14
2
8
5
6 | DR- | DRAni
DREti
DRIki
-
*DU/RZO | 2
6
8
138 | MR- | *MA/Rka
MREnu
-
*MO/Rdu
- | 6
15
45 | ST- | STAdi
STEti
STIse
STOlo
STUCI | 10
6
10
22
2 | | CK- | -A
-E
-I
-O
-U | CKAno
CKEmo
-
CKOzu | 6
21
21 | DZ- | DZAbi
DZEli
-
DZOru
- | 2
1
4 | PL- | PLAta
PLEci
PLIZO
-
PLUci | 4
9
29 | TC- | TCAro
TCEru
**TiTCI
**ToTCO
TCUre | 6
5
13
5
17 | | CL- | -A
-E
-I
-O
-U | CLAdo
CLEsi
CLIka
CLOri
CLUva | 6
15
83
1
7 | FL- | FLAmi
FLEti
FLIdu
FLOfu
(FLUro) | 1
2
7
1 | PR- | PRAse
**PaPRE
PRIre
PROju
PRUci | 11
9
15
14
4 | TR- | TRAdu
TREna
TRIcu
TROku
TRUke | 12
6
6
5 | | CM- | -A
-E
-I
-O
-U | CMAlo
CMEni
CMIza
- | 21
6
4 | FR- | #FA/Rfu
FREna
-
#FO/Rma
FRUta | 13 | SK- | SKAlu
-
SKItu
SKOri
*SU/Ksi | 7
5
2
1 | TS- | TSEro
TSIme
TSUfi |
14
4
1 | | CN- | -A
-E
-I
-O
-U | *CA/Nli
CNIda
-
**CNiNU | 3
7
6 | GL- | -
GLIda
-
- | 2 | SL- | -
SLIti
SLOpu
SLUko | 2
1
1 | V L− | VLAko
-
-
-
- | 1 | | CP- | -A
-E
-I
-O
-U | -
-
-
-
CPUla | 7 | GR- | GRAda
GREsa
GRItu
GROda
GRUpa | 9
12
6
21
30 | SM- | SMAno
SMIke
SMUpi | 3
8
1 | VR- | VREti
VRIci
- | Ħ
Ħ | | CR- | -A
-E
-I
-O
-U | CRAno
-
CRIna
(CROmi) | 1 2 | JM- | -
JMIte
-
- | 6 | SN- | *SA/Nca
SNEku
SNIre
(SNOla) | 4
1
14 | ZB÷ | -
-
-
ZBUma | 8 | | CT- | -A
-E
-I
-O
-U | CTEki
CTIfu
-
CTUda | 3
15 | KL- | KLAbu
KLEsi
KLIri
KLOgu
*KUt/La | 3
9
8
2
7 | SP- | SPAsi
SPEni
SPIcu
SPOpa
SPUro | 16
6
7
4
5 | ZV- | ZVOto | 10 | | B adjo | | baj | | | bough | buste | | bus | bue | | step | |-------------------------|-------|------------|-----|-----|------------------|----------------|-------|------------|------|-----|----------------| | badlo | | bad | | | bundle | | | 1. | | | . | | bakso | | bao | | | box | Cabro | | cab | | | burn
chance | | bakto | | bak | | | bucket | canse | | can | cae | | print | | balci | | bac | Daı | | build | capri
carbo | | cap | | | carbon | | balma | | bam | | | ball | cartu | | car
cat | | | map | | balpi | | bal | | | balance
bathe | caslo | | cas | | | whistle | | banci
banko | | ban | | | bank | cavle | | cav | | | shovel | | banse | | _ | | | basket | cefli | | cef | | | chief | | barda | | - | | | reward | cenja | | cen | cea | | change | | barma | | bar | haa | | arm | cidja | | cid | ••• | | awake | | basni | | bas | Vaa | | base | | cedzu | | | | shadow | | batmi | | bat | | | trade | ciktu | | cik | ciu | | equal | | batpi | | bap | | | bottle | cimra | | cim | | | summer | | batra | | - | | | butter | cinta | | cin | | | infant | | bekli | | bel | | | bell | cirna | | cir | cia | | learn | | bekti | | bek | | | object | cirzi | cersi | cei | | | chair | | bendu | | ben | beu | | band | cirzo | | cio | | | scissors | | berci | | _ | | | sheep | ckano | | cka | | | kind | | berti | | ber | bei | | carry | ckela | | kea | | | school | | betcu | | bet | | | bent | ckemi | kemdi | kem | | | chemical | | betpu | bedpu | bed | | | bed | ckemo | | cke | | | time | | bidje | | bie | | | edge | ckozu | | cko | | | cause | | bilca | | bic | | | military | clado | | cla | | | loud | | bilti | | | bii | | beautiful | | clesi | cle | | | without | | bisli | | bis | | | ice | clidu | | - | | | slide | | | pasko | | | pao | | clife | | lif | | | leaf | | bitsa | | | bia | | between | clika | | cli | | | like | | bivdu | | | bid | biu | behave | clina | | lin | | | line | | blabi | | lab | | | white | clivi | _ | | lii | | live | | | bulbi | | bui | | bulb | | cluva | | | | love | | blada | | bla | | | blade | cmalo | | cma | | | small | | | blicu | | | | possible | cmeni | | cme | | | money | | bleka | | ble | | | watch | cmiza | | cmi | | | amuse | | | bitce | - | | | whip | enida
eninu | | cni | | | need
new | | bloda | | blo | | | hit
blood | | snire | cnu
sni | | | near | | bludi | | blu | | | | colku | Surre | col | | | silk | | bongu
borku | | bon
bor | | | bone
bow | | clori | | | | chlorine | | botci | | boi | | | poa | comtu | | | cot. | cou | ashamed | | | botsu | | hou | | boat | condi | | con | - | - | deep | | botta | 50054 | - | oou | | button | | hanco | | | | hand | | | brudi | bru | | | brother | corta | | | coa | | short | | brana | | bra | | | born | crano | | cra | | | smile | | | breba | | | | bread | crina | | cri | | | rain | | brato | | rao | | | ratio | cteki | | cte | | | tax | | bredi | | bre | | | ready | ctifu | | cti | | | stuff | | breko | | rek | | | brake | cundo | | cuo | | | window | | briga | | rig | ria | | brave | cupri | | cup | | | copper | | briku | | rik | | | brick | cutci | | cuc | | | shoe | | brili | | ril | | | bright | cutri | | cut | cui | | water | | brize | | bri | | | wind | cutse | | cus | cue | | say | | brocu | | roc | rou | | brush | | | | | | | | broda | | rod | | | broken | Dakli | | dak | | | probable | | broko | | bro | | | break | damni | | dam | | | down | | brute | | | | | Lanca de Lanca | | | | | | 211-2 | | | | rue | | | breathe | dampa | | === | | | pump | | bukcu | | buk | buu | | book | danci | • | | dai | | plan | | bukcu
bulju
bunbo | | | buu | | | _ | • | | | | | | da | | 4 | | 4 | 0 | | _ | | | | |----------------|--------|------------|------------|-------------|----------|-------|-----|-----|-----|-----------| | danza
darli | | daa
dar | | desire | fasru | | fas | | | easy | | darto | | dao | | far | | purfe | | - | | perfect | | | | | 4-2 | door | fekto | | | feo | | fact | | denli | | | dei | day | femdi | | fem | | | female | | denro | | den | | danger(ous) | ferci | | fei | | _ | affair | | dertu | 4 - 4 | deu | | dirt | | felda | | | fea | | | | detra | | dea | daughter | | fernu | | feu | | iron | | dilri | | - | | represent | ferti | | fet | | | fertile | | dipri | | dip | | precious | festi | | fes | | | waste | | | dirco | | d10 | direction | fibru | | fib | | | weak | | dislu | | diu | | discuss | fikco | | fik | | | fiction | | disri | | dii | | decide | fildi | | fii | | | field | | ditca | | dia | | teach | filmo | | | fio | | feel | | | citlu | | | detail | firpa | | | fia | | afraid | | ditka | | dit | | bite | fitpi | | | fip | | foot | | | targo | | tao | argue | fizdi | | | fid | | physical | | • | djudi | • | | judge | flami | | fla | | | flame | | djale | | jal | | ring | fleti | | fle | | | fly | | djano | | dja | | know | flofu | | flo | | | float | | djela | | dje | jel | healthy | flora | | lor | loa | | flower | | djeta | | jet | | owe | foldi | | fod | | | fold | | | ded jo | | dej | finger | folma | | | foa | | full | | - | jmite | jmi | | meet | forli | fotli | fot | foi | | strong | | djine | | dji | | join(t) | forma | | fro | fom | | form | | djino | vinjo | vin | | wine | fosli | | fos | | | force | | djipo | | jip | jio | important | fragu | | rag | | | fog | | djiri | hijra | hia | | here | frama | | ram | | | frame | | djitu | | jit | jiu | tight | fremi | | rem | | | friend | | djora | jorta | jor | joa | hour | frena | | fre | | | front | | djori | | djo | | member | frezi | | rez | | | free | | d joso | | jos | | sew | fruta | | fru | | | fruit | | djula | | jul | | jewel | fulri | | - | | | rich | | djupo | | jup | juo | support | fumna | | fum | fua | | woman | | donsu | | don | dou | give | fundi | | - | | | like/fond | | dorja | | dor | | war | futci | | fut | fuc | fui | future | | dotra | | dot | | winter | | | | | | | | draka | | rak | | dark | Gacpi | hapci | hap | hai | | happy | | drara | | - | | drawer | gancu | | gac | gau | | win | | dreti | | dre | | correct | gandi | | gad | | | god | | driki | | dri | | remember | ganli | | gal | | | organize | | dumni | humni | hum | hun | human | ganta | | gan | gaa | | high | | durna | | dun | dua | adorn | gardi | | - | | | garden | | durzo | | dru | dur | do | garko | harko | har | hao | | shelter | | dustu | | dus | | dust | garni | | gar | gai | | rule | | duvra | duvri | duv | dui | discover | garti | | gat | | | grateful | | dzabi | | dza | | real/exist | gasno | | gas | | | anus | | dzaso | | zas | | soap | gasti | | - | | | steel | | dzeli | | dze | | jelly | genza | | gen | gea | | again | | dzoru | | dzo | | walk | getsi | | get | gei | | get | | dzozo | hozda | - | | hose | ginru | | gin | | | root | | | | | | | girsa | gresa | gre | | | grease | | Fagro | | fag | | fire | glida | | gli | | | guide | | falba | | fab | faa | fail | gliso | | _ | | | glass | | falji | | fal | fai | false | gokru | | gok | | | hook | | famji | | fam | | family | gomni | | gom | | | sticky | | | pozfa | poz | | oppose | _ | hatro | | | | hot | | fanra | | fan | | farm | gotca | | goa | | | goat | | fanri | fanve | fav | | reverse | gotri | | gor | | | industry | | farfu | | fra | far | father | gotso | | | gos | goo | - | | fasli | | _ | | face | grada | | gra | _ | _ | great | | | | | | | | | | | | | | grani | drani | dra | | | dry | kerju | | kej | keu | care | |---|---|---|-------------------|-----|--|--|-------------------------|---|--------------------------|--| | grasa | | raa | | | grass | kerti | | ker | | air | | grato | | - | | | cake | ketli | | ket | | kettle | | gritu | | gri | | | sing | kicmu | | kic | | doctor | | groci | | roi | | | angry | kinci | | kin | kii | companion | | groda | | gro | | | big | kinku | | kik | | sharp | | gruni | rulni | rul | rui | | rule | klabu | | kla | | cloth | | grunu | | run | | | grain | klada | | • | | cloud | | grupa | | gru | | | group | klesi | | kle | | class | | gudbi | | gud | gub | | good | klini | | - | | clean | | gunti | | gun | gui | | country | klipu | | - | | keep | | gusti | kusti | - | | | costly | kliri | | kli | | clear | | gusto | | gus | gut | | flavor | kokfa | | kok | | cook | | gutra | | gur | | | strange | koldu | holdu | hol | hou | hole | | | | | | | | kolro | | kol | koo | color | | J aglo | |
jag | jao | | angle | komeu | | kom | | comb | | jalti | | jai | _ | | product | kompi | | - | | company | | janro | | jar | | | narrow | konsu | | kos | | consul | | janto | | jan | | | hunt | korci | korce | koc | koe | cord | | jokla | | jok | | | clock | korji | | koj | koi | command(er) | | jugra | | jug | jua | | grab | korka | | _ | | cork | | junti | | jun | - | | young | korma | horma | hor | hoa | horse | | jupni | | jui | | | opine | korti | | kor | | body | | jurna | | - | | | earn | korva | | kov | koa | curve | | • | | | | | | kra ju | | raj | | scratch | | Kakto | | kak | kao | | act | kraku | | kra | | cry | | kalpi | kopca | kop | | | сору | krali | kroli | kro | | current | | kamda | • | kad | | | fight | kreni | | kre | | ray | | kamfu | komfu | kof | kou | | comfortable | Krido | | kri | | believe | | kamla | | kam | kaa | | come | krinu | | - | | nut | | kamra | | kar | | | camera | kruma | | kru | | room | | kamti | | - | | | committee | kubra | | kub | | wide | | kamtu | kumtu | kum | kuu | | common | kukra | | kuk | | fast | | kance | | kac | kae | | conscious | kunti | kenti | ken | | question | | kanci | kunci | kuc | kui | | relation | kupta | | kup | | cup | | | | | | | | | | | | | | Kangu | | kau | 2001 | | dog | kurfa | | kur | | square | | kangu
kanli | canli | | nu_ | cai | dog
quantity | kurfa
kurni | | kur
kun | | square
warn | | kanli | canli
klogu | cna | | cai | quantity | kurni | hasfa | kun | haf ha | warn | | kanli
kanlo | canli
klogu | cna | | cai | quantity close | kurni | hasfa | kun
has | haf ha | - | | kanli
kanlo
kanmo | | cna
klo | | cai | quantity close able | kurni
kusfa
kusmo | hasfa | kun
has | | warn
a house | | kanli
kanlo | | cna
klo
kan | | cai | quantity close | kurni
kusfa | hasfa | kun
has
kus | | warn
a house
custom | | kanli
kanlo
kanmo
kanpi
kanra | klogu | cna
klo
kan | | cai | quantity close able compete | kurni
kusfa
kusmo
kuspo
kutla | hasfa | kun
has
kus
-
klu | | warn
a house
custom
spread | | kanli
kanlo
kanmo
kanpi
kanra
kanse | klogu
perti | cna
klo
kan | | cai | quantity close able compete cane concern | kurni
kusfa
kusmo
kuspo | hasfa | kun
has
kus
-
klu | kuo | warn a house custom spread cut | | kanli
kanlo
kanmo
kanpi
kanra
kanse | klogu
perti
celna | cna
klo
kan
-
-
cel | | cai | quantity close able compete cane concern shelf | kurni
kusfa
kusmo
kuspo
kutla | hasfa | kun
has
kus
-
klu | kuo
kua | warn a house custom spread cut | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kante | klogu
perti | cna
klo
kan
-
-
cel | | cai | quantity close able compete cane concern shelf count | kurni
kusfa
kusmo
kuspo
kutla
kuvga | hasfa | kun
has
kus
-
klu
kuv | kuo
kua | warn a house custom spread cut cover | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kante | klogu
perti
celna | cna
klo
kan
-
cel
kon | | cai | quantity close able compete cane concern shelf count bill | kurni
kusfa
kusmo
kuspo
kutla
kuvga | | kun
has
kus
-
klu
kuv | kuo
kua | warn a house custom spread cut cover | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kanta
kanto | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol | | | quantity close able compete cane concern shelf count bill control | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu | sluko | kun
has
kus
-
klu
kuv
lak
slu
lal | kuo
kua | warn a house custom spread cut cover wax lock | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kante
kanti
kanto
kanvi | klogu
perti
celna
konte | cna
klo
kan
-
cel
kon
tol
viz | | | quantity close able compete cane concern shelf count bill control see | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi | sluko | kun has kus - klu kuv lak slu lal | kuo
kua | warn a house custom spread cut cover wax lock old | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kante
kanti
kanto
kanvi
kapli | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol | | | quantity close able compete cane concern shelf count bill control see complete | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi
larte | sluko | kun has kus - klu kuv lak slu lal | kua
kua
lai
lae | warn a house custom spread cut cover wax lock old land | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma | perti
celna
konte | cna
klo
kan
-
cel
kon
tol
viz
kal | | | quantity close able compete cane concern shelf count bill control see | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi | sluko | kun has kus klu kuv lak slu lal lan lar | kua
kua
lai
lae | warn a house custom spread cut cover wax lock old land art | | kanli
kanlo
kanmo
kanpi
kanra
kanse
kanta
kante
kanti
kanto
kanvi
kapli | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal | | | quantity close able compete cane concern shelf count bill control see complete hat | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi
larte
lasti | sluko | kun has kus klu kuv lak slu lal lan lar | kua
kua
lai
lae | warn a house custom spread cut cover wax lock old land art elastic | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal | | | quantity close able compete cane concern shelf count bill control see complete hat open | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi
larte
lasti
ledri | sluko | kun has kus klu kuv lak slu lal lan lar las led | kua
kua
lai
lae | warn a house custom spread cut cover wax lock old land art elastic lightning | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap | | | quantity close able compete cane concern shelf count bill control see complete hat open card | kurni
kusfa
kusmo
kuspo
kutla
kuvga
Lakse
laksu
laldo
landi
larte
lasti
ledri
ledzo | sluko | kun has kus klu kuv lak slu lal lan lar las led | kua
lai
lae | warn a house custom spread cut cover wax lock old land art elastic lightning left | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapma karda karku | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap | Vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi | sluko | kun has kus klu kuv lak slu lal lan lar las led lez | kua
lai
lae | warn a house custom spread cut cover wax lock old land art elastic lightning left level | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda karku karsa kasfa | perti
celna
konte | cna
klo
kan
-
cel
kon
tol
viz
kal
-
kap | Vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki | sluko | kun has kus klu kuv lak slu lan lar las led lez lel len | kua
lai
lae | warn a house custom spread cut cover wax lock old land art elastic lightning left level language | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapma karda karku karsa | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap
-
kas | Vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish cow | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki lenri | sluko | kun has kus klu kuv lak slu lan lar las led lez lel len lek nen | kua lai lae lep | warn a house custom spread cut cover wax lock old land art elastic lightning left level language electric | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda karku karsa kasfa kasni katca | perti
celna
konte | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap
-
kas | Vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish cow watch | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki lenri | sluko
nenri
lenzo | kun has kus klu kuv lak slu lan lar las led lez lel len lek nen | kua lai lae lep | warn a house custom spread cut cover wax lock old land art elastic lightning left level language electric in | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda karku karsa kasfa kasni katca katli | perti
celna
konte
troli
vizka | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap
-
kas | vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish cow | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki lenri lenze |
sluko
nenri
lenzo | kun has kus klu kuv lak slu lan lar las led lez len lek nen | kua lai lae lep | warn a house custom spread cut cover wax lock old land art elastic lightning left level language electric in lens | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda karku karsa kasfa kasni katca | perti
celna
konte
troli
vizka | cna
klo
kan
-
cel
kon
tol
viz
kal
-
kas
kaf | vik | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish cow watch quality | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki lenri lenze lerci | sluko
nenri
lenzo | kun has kus klu kuv lak slu lan lar las led lez lel len leo ler les | kua lai lae lep | warn a house custom spread cut cover wax lock old land art elastic lightning left level language electric in lens letter | | kanli kanlo kanmo kanpi kanra kanse kanta kante kanti kanto kanvi kapli kapma kapni karda karku karsa kasfa kasfa kasfa katca katli katma kecri | perti
celna
konte
troli
vizka | cna
klo
kan
-
cel
kon
-
tol
viz
kal
-
kap
-
kas
kaf | vik
kai
kei | | quantity close able compete cane concern shelf count bill control see complete hat open card crack across punish cow watch quality cat | kurni kusfa kusmo kuspo kutla kuvga Lakse laksu laldo landi larte lasti ledri ledzo lelpi lengu lenki lenri lenze lerci lesta | sluko
nenri
lenzo | kun has kus klu kuv lak slu lan lar las led lez lel len leo ler les | kua lai lae lep nei | warn a house custom spread cut cover wax lock old land art elastic lightning left level language electric in lens letter east | | | hidro | | | | hydrogen | nardu | | nad | | difficult | |----------------|-------|------------|-----|-----|---------------|-------|-------|----------|-----|---------------| | likro | | lio | | | liquor | narmi | | - | | army | | likta | | lik | | | week | narti | | - | | apart | | | flidu | | | | liquid | natli | | nat | | night | | lilfa | | lil | | | legal | natra | | nar | naa | nature | | | porli | - | - | | power(ful) | | nadri | - | | sodium | | limji | | | lij | | limit | nedza | | ned | nea | next | | linco | | lic | | | thin | negda | | neg | | egg | | lista | | lis | | | list | nerbi | | neb | | necessary | | litla | | lit | | | light | nervi | | nev | | nerve | | litnu | | liu | | | hold | nesta | | nes | | honest | | | cisti | | | | history | nigro | | nig | | black | | lodji | | lod | | | logic(al) | nikri | | nik | | cheese | | lokti | | loi | | | local | nilca | | - | | below | | lunli | | lul | | | wool | nimla | | nim | nia | animal | | lusta | | lus | lut | | west | nirda | | - | | bird | | | | | | | | nirli | | nil | | girl | | Madzo | | mad | mao | | made | nirne | | nin | nie | year | | malbi | | mal | | | sick | nitci | | nit | | neat | | malna | | man | | | milk | | fatru | | fau | trouble | | | mendi | | | | male | norla | nordi | nod | | north | | | dupma | _ | | | deceive | norma | | nom | noa | average | | manko | | mak | | | mouth | | notbi | | | other | | | monca | | | | mountain | | netre | | | net | | marka | | mra | mar | | mark | | ridle | | | read | | matci | | mai | | | machine | numcu | | num | nuu | number | | matma | | | mam | maa | mother | nuzvo | | nuz | | news | | menki | | mek | | | eye | | | | | | | mensa | | mea | | | month | | packe | - | | pocket | | merji | | mer | | | marry | padzi | | paz | | pad | | merli
metli | | mel
met | meı | | measure | pafko | | | | dig | | | cetlo | | | | metal | - | nable | | | problem | | | sorme | | | | wet
sister | panba | ha-ba | pan | | pan | | midju | SOLME | mid | | | middle | - | herba | | | plant | | miksa | | mis | штЈ | | mix | - | patpe | - | | pot | | mildo | | шт2 | | | mild | papre | parti | pre | noi | paper | | milfa | | mia | | | meal | parte | parti | - Par | pal | part
paste | | minku | | miu | | | ore | pasti | | pad | | wait | | mipli | | mip | mii | | example | penbi | | pau
- | | pen | | mitro | | | mio | | meat | pendi | | ped | | hang | | modvi | | mov | | | motive | penar | | - | peo | think | | monza | | moz | | | morning | - | petci | | | pay | | mordu | | mro | | | more | | penta | | | point(ed) | | morto | | mor | | | dead | pernu | penta | | peu | person | | motci | | moc | | | motor | petri | | PCI | pou | distribute | | mrenu | | mre | | | man | - | hompi | hom | | drink | | mroza | | roz | roa | | hammer | pifno | | | pio | frequent | | mubre | | mub | | | wood | pilno | | pil | PIO | plain | | murki | | muk | | | monkey | pinca | | pic | | urine | | mursi | | mur | | | sea | pinda | | pid | | pin | | muslo | | mus | | | muscle | pinti | | pin | | paint | | muvdo | | muv | muo | | move | pisku | | piu | | piece | | muzgi | | muz | | | music | pismi | | pis | | peace | | - | | | | | | _ | smupi | _ | | smooth | | Nadzo | | naz | nao | | now | plado | - • - | lad | | plow | | na jda | | naj | | | knife | plata | | pla | | plate | | naldi | | nal | | | nail | - | pleci | | | play | | namci | | nam | | | name | plizo | | pli | | use | | | | | | | | _ | | - | | | | nanta | nanda | | | | knot | pluci | | plu | | please | | | | | _ | | 10- | | 6 | | | sail | |---|-------------------------|---|-------------------------|---|---|---|---|------------|-----|---| | pluma | | lum | lua | feather | salfa | | saf | | | sane | | pod ju | proju | | | produce | samto | | sam | 540 | | sand | | poldi | | pod | | nation | sanca | | sna
- | | | suggest | | ponsu | | pon | pou | own | sange | | san | 922 | | sign | | porju | | poj | | pig | sanpa | | sas | | | sense | | posta | | pot | 1 | post(al) | sanse
santi | | sai | Sac | | silent | | potri | | | nuı | destroy | santi | | sap | | | simple | | pozbu | burpo | | | opposite | sarni | | sar | | | sour | | prali | | ral | | profit | satci | | sac | | | start | | prano | | - | | run
continue | satro | | sat | | | rub | | prase | | pra | | price | | selji | | | | self | | prati | | rat | | prisoner | sekci | 30111 | sec | | | sex(ual) | | preni | | - | | behind | | helba | | | | help | | prire | | pri
riz | | private | sensi | | ses | | | science | | prizi | | | | • | setci | | set | sei | | set | | proza | | - | | prose
test | | sekta | | 501 | | insect | | pruci | | pru | | | setfa | SCROA | sea | | | put | | prusa | | rus | | approve
protest | sidza | | siz | | | seed | | prutu | | ruu | | public | siltu | | | siu | | shake | | publi | pubmu | pub | | lead | simba | | sib | | | lion | | - | pueto | _ | DUIG | push | simci | | | sii | | seem | | pudru | pueto | pud | puo | powder | sinma | | sin | | | cinema | | pulso | | pul | | impelled | | snatu | | | | tin | | punfo | | Par | | pure | sirna | | sir | | | certain | | puntu | | | puu | pain(ful) | sitci | | sic | | | city | | purda | | - | pua | word | sitfa | | sit | sif | sia | place | | p | | F | | | sitmo | sisto | sis | sio | | system | | Randi | rande | rad | rae | round | skalu | | ska | | | scale | | | fando | | | end | skapi | | _ | | | skin | | | | | | | | | | | | | | ran io | | _ | | range | _ | begco | beg | beo | | request | | ranjo
ranta | | | | | _ | _ | beg
ski | | | sit | | • | | - | | range | skiti | _ | _ | | | - | | ranta
rasto | patce | -
ran
ras | | range
rotten | skiti
skitu | _ | ski | | | sit
ski
screw | | ranta
rasto | patce | -
ran
ras | | range
rotten
brass | skiti
skitu
skizo | - | ski
kiz | | | sit
ski
screw
sweet | | ranta
rasto
ratci | patce | ran
ras
pac | | range
rotten
brass
device | skiti
skitu
skizo
skori | _ | ski
kiz
sko | | | sit
ski
screw
sweet
steep | | ranta
rasto
ratci
ratcu | patce | ran
ras
pac
rau | | range
rotten
brass
device
rat | skiti
skitu
skizo
skori
sliti
slopu
smano | _ | ski
kiz
sko
sli | | | sit
ski
screw
sweet
steep
smoke | | ranta
rasto
ratci
ratcu
raznu | patce | ran
ras
pac
rau
raz
red | | range
rotten
brass
device
rat | skiti
skitu
skizo
skori
sliti
slopu
smano
smike | | ski
kiz
sko
sli
slo
sma
smi | | | sit ski screw sweet steep smoke secret | | ranta
rasto
ratci
ratcu
raznu
redro | | ran
ras
pac
rau
raz
red
ren | pae | range rotten brass device rat reason | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina | | ski
kiz
sko
sli
slo
sma | | | sit ski screw sweet steep smoke secret mind | | ranta
rasto
ratci
ratcu
raznu
redro
renro
resfu
resra | | ran
ras
pac
rau
raz
red
ren
res | pae
reo
ref | range rotten brass device rat reason throw dress
restaurant | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku | | ski
kiz
sko
sli
slo
sma
smi
min
sne | | | sit ski screw sweet steep smoke secret mind neck | | ranta
rasto
ratci
ratcu
raznu
redro
renro
resfu
resra | | ran
ras
pac
rau
raz
red
ren
res | pae
reo
ref | range rotten brass device rat reason throw dress restaurant explode | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku
snice | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic | | | sit ski screw sweet steep smoke secret mind neck snow | | ranta
rasto
ratci
ratcu
raznu
redro
renro
resfu
resra | zbuma | ran
ras
pac
rau
raz
red
ren
res | pae
reo
ref | range rotten brass device rat reason throw dress restaurant explode recline/rest | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku
snice
socli | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol | | | sit ski screw sweet steep smoke secret mind neck snow social | | ranta rasto ratci ratcu raznu redro renro resfu resra resta resto retca | zbuma | ran ras pac rau raz red ren res - zbu ret | pae
reo
ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku
snice
socli
solda | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod | | | sit ski screw sweet steep smoke secret mind neck snow social soldier | | ranta rasto ratcu ratcu raznu redro renro resfu resra resta resto retca retpi | zbuma | ran ras pac rau raz red ren res - zbu ret rec rep | pae
reo
ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku
snice
socli
solda
solte | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot | | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt | | ranta rasto ratcu ratcu raznu redro renro resfu resra resta resto retca retpi revri | zbuma | ran ras pac rau raz red ren res zbu ret rec rep | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot | soa | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound | | ranta rasto ratci ratcu raznu redro renro resfu resta resta retca retpi revri ridji | zbuma | ran ras pac rau raz red ren res zbu ret rec rep | reo ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli | | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi | soa. | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep | | ranta rasto ratci ratcu raznu redro renro resfu resra resta resto retca retpi retri ridji rilri | zbuma | ran ras pac rau raz red ren res zbu ret rec rep rev lid | reo ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular | skiti
skitu
skizo
skori
sliti
slopu
smano
smike
smina
sneku
snice
socli
solda
solte
sonda
sonli
sonta | sunho | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot
son
soi | soa
soa | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son | | ranta rasto ratci ratcu raznu redro renro resfu resra resta resto retca retpi retri ridji rilri rinta | zbuma | ran ras pac rau raz red ren res - zbu ret rec rep rev lid rii rin | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi | sunho | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot
son
soi
sun | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store | | ranta rasto ratci ratcu raznu redro renro resfu resra resta resto retca retpi ridji rilri rinta rirda | zbuma | ran ras pac rau raz red ren res - zbu ret rec rep rev lid rin rin | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sorlu | sunho | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot
son
soi
sun
soi | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear | | ranta rasto ratcu ratcu raznu redro renro resfu resra resta resto retca retpi ridji rilri rinta rirda rispa | zbuma
lidji
daspa | ran ras pac rau raz red ren res - zbu ret rec rep rev lid rin rir das | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sorlu spada | sunho
sorgu
ponda | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
sro | soa
suo | | sit ski screw screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond | | ranta rasto ratcu ratcu raznu redro renro resfu resra resta resto retca retpi ridji rilri rinta rirda rispa rispe | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rii rin rir das ris | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonti sonta sordi sortu spada spali | sunho
sorgu
ponda | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
sro
sun
spal | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side | | ranta rasto ratcu ratcu raznu redro renro resfu resta resta resto retca retpi ridji rilri rinta rirda rispa rispe ritco | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rin rin das ris ris | reo ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sordi spada spana | sunho
sorgu
ponda | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sod
sot
son
soi
sun
sro
spal
a hos | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital | | ranta rasto ratcu ratcu raznu redro renro resfu resta resta resto retca retpi ridji rilri rinta rirda rispa rispe ritco rodja | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rin rin das ris ric roj | reo ref | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sordi spada spali spana spasi | sunho
sorgu
ponda
hospa | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sod
sot
son
soi
sun
sro
a pal
hos
spa | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space | | ranta rasto ratcu ratcu raznu redro renro resfu resta resta resto retca retpi ridji rilri rinta rirda rispa rispe ritco rodja rodlu | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rii rin rir das ris ric roj | pae reo ref rea rei | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sorlu spada spali spana spasi spebi | sunho
sorgu
ponda
hospa | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
sro
a poa
pal
hos
spa
pet | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special | | ranta rasto ratcu ratcu raznu redro renro resfu resta resto retca retpi ridji rinta rirda rispa rispe ritco rodja rodlu rofsu | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rii rin rir das ris rio rof | pae reo ref rea rei dap | range rotten brass device rat reason throw dress restaurant explode
recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road rough | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sortu spada spali spana spasi spebi spena | sunho
sorgu
ponda
hospa | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
soi
soi
soi
soi
soi
soi
soi
soi
soi | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special sponge | | ranta rasto ratcu ratcu raznu redro renro resfu resta resta resto retca retpi ridji rilri rinta rirda rispa rispe ritco rodja rodlu rofsu rolgu | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rin rir das ris ric roj | reo ref rea rei dap | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road rough roll | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sortu spada spali spana spasi speni speni | sunho
sorgu
ponda
hospa | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
son
soi
soi
soi
soi
soi
soi
soi
soi
soi
soi | soa | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special sponge experience | | ranta rasto ratcu ratcu raznu redro renro resfu resta resto retca retpi ridji rinta rirda rispa rispe ritco rodja rodlu rofsu | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rin rir das ris ric roj | pae reo ref rea rei dap | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road rough | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sortu spada spasi speni speni speni spicu | sunho
sorgu
ponda
hospa
penja | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
soi
pal
hos
spa
spe
spi | soa | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special sponge | | ranta rasto ratcu ratcu ratcu raznu redro renro resfu resta resto retca retpi ridji rinta rirda rispa rispe ritco rodju rofsu rutma | zbuma
lidji
daspa | ran ras pac rau raz red ren res - zbu ret rec rep rev lid rin rir das ris rio rof rof rot | reo ref rea rei dap | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road rough roll route | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonti sorti sorti spada spali spana spasi speni speni spicu spila | sunho
sorgu
ponda
hospa
penja | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
spa
pal
hos
spa
pet
spe
spe
spi
a cpu | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special sponge experience spirit | | ranta rasto ratcu ratcu raznu redro renro resfu resta resta resto retca retpi ridji rilri rinta rirda rispa rispe ritco rodja rodlu rofsu rolgu | zbuma
lidji
daspa | ran ras pac rau raz red ren res zbu ret rec rep rev lid rin rir das ris ric roj | reo ref rea rei dap | range rotten brass device rat reason throw dress restaurant explode recline/rest different answer dream religious regular rhythm(ic) record responsible respect right grow road rough roll | skiti skitu skizo skori sliti slopu smano smike smina sneku snice socli solda solte sonda sonli sonta sordi sortu spada spasi speni speni speni spicu | sunho
sorgu
ponda
hospa
penja | ski
kiz
sko
sli
slo
sma
smi
min
sne
nic
sol
sot
son
soi
sun
soi
pal
hos
spa
spe
spi | soa
suo | | sit ski screw sweet steep smoke secret mind neck snow social soldier salt sound sleep son store ear respond side hospital space special sponge experience spirit pull | | spuro | | spu | | skill(ed) | titci | | tci | | | eat | |-------|-------|-----|-----|------------|---------------|-------|-----|-----|-----|-------------------------| | sputa | | put | | spoon | tobme | | tob | toe | | table | | | spetu | | | spit | togri | | tog | toi | | agree | | srisu | | riu | | serious | tokna | | toa | | | take | | srite | | sri | | write | tokri | | - | | | chalk | | stadi | | sta | | stage | tomti | tomki | tok | | | automatic | | stali | | tai | | stand | torni | | ton | | | twist | | stana | | - | | station | tosku | hedto | hed | | | head | | | staga | - | | stem | totco | | tco | | | touch | | stari | | - | | surprise | totnu | | tot | | | thick | | stire | - | | tie | stairs | tovru | | tov | | | over | | stise | | sti | | stop | traci | | rac | | | travel | | | steti | | | sentence | tradu | | tra | | | true | | stolo | | sto | | stay | trana | | tan | | | rotate | | stuci | | stu | | story | trani | trali | _ | | | tray | | | ctuda | ctu | | feces | trati | | rai | | | try | | stuli | | tui | | adjust | treci | | - | | | interesting | | sucmi | | • | | swim | trelu | | rel | reu | | rail | | sudna | | sua | | sudden | trena | | tre | | | train | | suksi | | sku | | succeed | tricu | | tri | | | tree | | sulba | | sul | | swelling | trida | | _ | | | street | | sumji | | sum | | sum | trili | | til | | | <pre>attract(ive)</pre> | | sundi | | sud | sui | send | trime | | rim | rie | | tool | | supta | | sup | | soup | troku | | tro | | | rock | | surla | surdi | sur | | south | trufa | | ruf | | | roof | | surna | | sru | | injure | truke | | tru | | | structure | | surva | | suv | | serve | tsero | | tse | | | error | | sutme | | sut | | smell | tsime | | tsi | | | crime | | | | | | | tsufi | | tsu | | | enough | | Takna | | tak | taa | talk | tubli | | tub | | | tube | | tarci | | tar | | star | tugle | | tul | tue | | leg | | tardu | hardu | had | | hard | turka | | tur | tua | | work | | tarle | | tal | tae | tired | | | | | | | | tarmo | harmo | ham | | harmony | V alda | | vad | | | develop | | tarmu | | tam | tau | weapon | valna | | van | vaa | | violent | | tcaku | | cak | | shock | valpu | | vap | vau | | wave | | tcale | langa | lag | laa | long | vapra | vapro | vao | | | gas | | tcali | | cal | | wall | vatli | | val | vai | | value | | tcari | karti | - | | cart | vedji | mutce | muc | mut | mue | much/very | | tcaro | | tca | | car | vedma | | ved | | | sell | | tcela | | - | | wing | vendu | | ven | veu | | poison | | tcena | | - | | chain | verti | vreti | vre | | | vertical | | tceru | | tce | | through | veslo | | veo | | | vessel | | tcori | | - | | authority | vetci | | vet | vei | | happen | | tcura | curca | cur | | safe | vetfa | | _ | | | invent | | tcure | | teu | | picture | vidju | | vij | viu | | view | | tedji | | ted | tei | attend | vidre | | vid | | | idea | | tenri | | ten | | increase | virsa | | vis | | | poetry | | tepli | | tep | | church | virta | | vir | | | ad | | terla | | tel | | terrestial | visra | | - | | | viscera | | testi | | - | | gonad | vlako | | vla | | | lake | | tetcu | | tec | teu | stretch | volsa | | vol | voa | | voice | | tetri | | tet | | weather | volti | | vot | voi | | jump | | tidjo | | tid | tio | heavy | vrici | | vri | | | river | | tifru | | tiu | | offer | | | | | | | | tinmo | | tin | | ink | Zavlo | | zav | zao | | bad | | tirca | | tic | | wire | zavno | | zan | | | oven | | tirku | hirti | hir | | hear | zvoto | | zvo | | | out | | tisra | | tia | | selec | New | Old | English | holdu | koldu | hole | |----------------|----------------|---------------|----------------|--------|--------------| | | | | hompi | pidra | drink | | Bedpu | betpu | bed | horma | korma | horse | | begco | skiti | request | hospa | spana | hospital | | bitce | blice | whip | hozda | dzozo | hose | | blicu | bleci | possible | humni | dumni | human | | botsu | botcu | boat | hutri | potri | destroy | | breba | brano | bread | | | | | brudi | bradi | brother | J mite | djimi | meet | | bufpo | pozbu | opposite | jorta | d jora | hour | | bulbi | blabo | bulb | | | | | | _ | | Karti | tcari | cart | | Canli | kanli | quantity | kemdi | ckemi | chemical | | cedzu | cidza | shadow | kenti | kunti | question | | celna | kanta | shelf | klogu | kanlo | close | | cersi | cirzi | chair | komfu | kamfu | comfortable | | cetlo | metlo | wet | konte | kante | count | | cisti | litri | history | kopca | kalpi | сору | | citlu | ditcu | detail | korce | korci | cord | | clesi | claso | without | kroli | krali | current | | clori | colri | chlorine | kumtu | kamtu | common | | cluva | clivu | love | kunci | kanci | relation | | cpula | spila | pull | | | _ | | ctuda | studa | feces | Langa | tcale | long | | curca | tcura | safe | lenzo | lenze | lens | | | | _ | lidji | ridji | religious | | Daspa | rispa | responsible | | | - | | dedjo | djeto | finger | M endi | mandi | male | | detra | detri | daughter | monca | manta | mountain | | dirco | dirci | direction | mutce | vedji | much/very | | djudi | djadi | judge | | | | | drani | grani | dry | Nable | palna | problem |
| dupma | mandu | deceive | nadri | natri | sodium | | duvri | duvra | discover | nanda | nanta | knot | | | | | nenri | lenri | in | | Fando | rando | end | netre
nordi | nreti | net
north | | fanve | fanri | reverse | | norla | other | | fatru | nitru | trouble | notbi | norsa | other | | felda | ferlu | fall | Packe | packo | pocket | | fernu | ferno | iron | parti | packo | part | | flidu
fotli | likti | liquid | parti
pasko | bisti | part | | 10011 | forli | strong | pasko | ratci | device | | Cnaca | ai man | gmon go | patce | pante | pot | | Gresa | girsa | grease | patpe
penja | spena | sponge | | Hanco | oondu | hand | penja | pento | point(ed) | | | condu | | perti | kanse | concern | | hapci
hardu | gacpi
tardu | happy
hard | petci | penti | pay | | harko | garko | shelter | pleci | plici | play | | harmo | tarmo | harmony | ponda | spada | respond | | hasfa | kusfa | house | porli | lilpa | power(ful) | | hatro | gorma | hot | pozfa | fanpo | oppose | | hedto | tosku | head | proju | podju | produce | | helba | selba | help | pubmu | pubmi | lead | | herba | panta | plant | pucto | puctu | push | | herba | kerfa | hair | purfe | fekti | perfect | | hidro | lidro | hydrogen | harre | LONGI | po. 1000 | | hijra | djiri | here | Rande | randi | round | | hirti | tirku | hear | ridle | nrile | read | | | 271 44 | | . 1410 | | | | S ekta | setco | insect | surdi | surla | south | |---------------|-------|----------|---------------|-------|-----------| | selji | sedji | self | | | | | sisto | sitmo | system | Targo | ditlu | argue | | sluko | laksu | lock | tomki | tomti | automatic | | smupi | pismu | smooth | trali | trani | tray | | snatu | sinta | tin | troli | kanto | control | | snire | cnire | near | | | | | sorgu | sorlu | ear | V apro | vapra | gas | | sorme | metri | sister | vinjo | djino | wine | | spetu | sputu | spit | vizka | kanvi | see | | staga | stane | stem | vreti | verti | vertical | | steti | stisi | sentence | | | | | sunho | sonta | son | Zbuma | resta | explode | ## AFFIX USAGE & PRIMITIVE POWER Last Update: 2 Aug 82 In this listing the primitives are arranged in the order of their "power": the number of terms in the L4 pool of complexes to which each primitive contributes short-affixes. For example, <u>madzo</u>, which makes 277 such contributions, has the greatest power. The primitives with their affixes are arranged in groups of descending power. The number of times each affix is used under the current strategy for remaking the L4 CPXs is also shown. If that strategy were to be changed--if the vowel-rich strategy discussed elsewhere in this Notebook were, for example, to be adopted--the affix usage data would be slightly different. Usage-data on the three main types of affixes are shown in separate columns in the tables, and summary statistics are given for each type at the end of each group. For all groups but the first, accumulative statistics are given on a final line which includes that group with all groups of higher power. | No. of
Terms | Old
Prim | As
Remade | CCV | | Types & | Cover | | n | Coverage
Loss | Engli
Key-W | | |-----------------|-------------|--------------|-----|-----|---------|---------|-----|-----|------------------|----------------|--------| | | | | | | | | | | | | | | 277 | madzo | | | | mad | 14 | шао | 263 | - | made | | | 156 | durzo | | dru | | dur | 18 | | | - | do | | | 83 | clika | | cli | 83 | | | | | - | like | | | 69 | folma | | | | fol | 3 | foa | 66 | - | full | | | 63 | cenja | | | | cen | 6 | cea | 57 | - | change/ | become | | 54 | gotso | | | | got/s | 11/3 | goo | 40 | - | go | | | 50 | forma | | fro | 28 | fom | 22 | | | - | form | | | 45 | mordu | | mro | 45 | | | | | - | more | | | 44 | cutse | | | | cus | 2 | cue | 42 | - | say | | | 43 | kakto | | | | kak | 18 | kao | 25 | - | act | | | 40 | takna | | | | tak | 13 | taa | 27 | - | talk | | | 39 | krido | | kri | 39 | | | | | - | believe | : | | 37 | parte | parti | | | par | 10 | pai | 27 | - | part | | | 34 | donsu | - | | | don | 2 | dou | 32 | - | give | | | 32 | sitfa | | | | sit/f | 6/3 | sia | 23 | - | place | | | 30 | grupa | | gru | 30 | | | | | - | group | | | 29 | plizo | | pli | 29 | | | | | - | use | | | 28 | sitmo | sisto | | • | sis | 5 | sio | 23 | - | system | | | - | 02000 | | | | | • | | | | • | Terms | | 28+ |
18 wds | 2 | 7 | 392 | 15 |
136 | 11 | 625 | 0 | 33 afs | 1153 | | | 2.6% | 11% | 5 | | 9.7 | | 5 | 6.8 | 0% | 4% | 25% | | Final Total: | 702 wds | | | | | | 8 | | | 815 afs | 4421 | The final totals show that, by the end of the list, 702 primitives will be assigned 815 affixes which will, collectively, cover 4421 terms. To this must be added the 236 terms which will remain uncovered, yielding 4421 + 236 or 4657 as the size of the total pool of terms. It is of this total, for example, that the 1153 terms covered by the 33 affixes in this first group constitute 25%. Thus, 2.6% of the words and 4% of the affixes cover 25% of the terms. Note how important the CVV affixes are in this group. They cover more than half (625/1153 or 54%) of all the terms its affixes cover. The average coverage of the 11 CVVs is 56.8 terms, slightly higher than the 7 CCVs at 56 terms. Even setting aside the extreme cases $\underline{\text{mao}}$ and $\underline{\text{dru}}$, the average contribution of the other CVVs, at 36.2 terms, approaches that of the other CCVs, namely 42.3 terms, and it is four times as great as the mean coverage of the 15 CVCs at 9.1 terms per affix. Thus, the CVV-form is very important at the high end of the power scale. But this importance will diminish as the power of the prims diminishes. The remaking rate--here 11%--is also an interesting statistic. This is the lowest value it will have in the power-listing. What this means is that these most powerful words tend not to be packed, and that even when they are packed it is the weaker and less common words that compete with them that were most profitably changed. In the next group, the first coverage losses appear. Whether the uncovered terms involved are final ('f') or non-final ('n') is noted in the entry. The accumulating records of the two types of losses are then kept separately. | 27 | clivi | | | | liv | 21 | lii | 6 | - | live | | |--------|---------|-------|-------|-----|-------|---------|--------|---------|------------|------------|---------| | | ganta | | | | gan | 26 | gaa | 1 | _ | high | | | | garni | | | | gar | 23 | gai | 4 | - | rule | | | 25 | katli | | | | kat | 8 | kai | 17 | - | quality | | | 24 | kanli | canli | cna | 3 | | | cai | 21 | _ | quantity | | | | sensi | | | | ses | 24 | | | (21f) | science | | | 22 | sanpa | | | | san | 9 | saa | 13 | - | sign | | | | stolo | | sto | 22 | | | | | - | stay | | | 21 | ckemo | | cke | 21 | | | (keo) | | - | time | | | | ckozu | | cko | 21 | | | | | - | cause | | | | cmalo | | cma | 21 | | | | | _ | small | | | | groda | | gro | 21 | | | | | _ | big | | | | ponsu | | J | | pon | 14 | pou | 7 | - | OWI | | | 20 | gudbi | | | | gud/b | 16/2 | | | 2 f | good | | | | kusfa | hasfa | | | has/f | 7/2 | haa | 11 | - | house | | | | sedji | selji | | | sel | 20 | | | - w | self | | | 19 | lenri | nenri | | | nen | 17 | nei | 2 | - | in | | | | letci | | | | let | 3 | lei | 16 | - | let | | | | pernu | | | | per | 11 | peu | 8 | _ | person | | | | srite | | sri | 19 | | | | | - | write | | | 27_19. | 20 wds | 4 |
7 | 128 | 15 |
203 |
11 |
106 | 0 2 |
33 afs |
437 | | 19+: | 38 | 6 | 14 | 520 | | 339 | | 731 | 0 2 | 66 | 1590 | | 1741 | 5.4% | 20% | 18. | | 13. | | 9.6 | | 0.5% | 8.1% | 34% | | | J • ¬ # | 200 | 101 | | 13. | , | 5.0 | | لم ر ه ت | O . 1 p | م⊢ر | With the addition of this group to the first, more than a third of the pool is now covered. But note that the CVVs are diminishing in importance, having an average coverage of 9.6 terms in this group. The CVCs are increasing in relative importance, yielding 13.5 terms each, and the CCVs are now distinctly the most useful, being used 18.3 times per affix. cna is a special case. Unnatural as cna is, the tastier cai is used whereever it can be, and cna used only where cai can't. can and cal are not available, being more usefully assigned to canse (of power 10) and tcali (a 4). Our first coverage loss occurs in this group: 2 gudbi-final words (bilgudbi and mucgudbi) are not covered. gui is much more usefully assigned to gunti (a 15) and there is no possible CCV. Notice that the 21 <u>sensi</u>-final words are not reckoned as coverage losses. We actually want the final term to be unreduced in these words. The <u>lesta</u>- and <u>lusta</u>-final words (e.g., <u>surlesta</u>) are also desirably long, and so not counted in the pool of terms. Note that the remaking rate has doubled. It has gone from 11% to 20% It will continue to rise as the primitives decrease in power until it peaks at around 30% in the neighborhood of the 8's. Then it will go down again as occasions for solving tuning problems by remaking words diminish. | 18 | djine | | dji | 18 | | | | | | join(t) | | |-------|----------------|-------|-----|-----|----------------|---------|--------------|-------------|-------------|----------------|------| | | futci | | | | fut/c | | fui | 6 | - 10 | future | | | | kapli | | | | kal | 17 | | a 11 | 1 f | complete cover | | | | kuvga | | | | kuv | 4 | kua | 14 | - | Covet | | | | | | | | | _ | | 10 | - | direction | | | 17 | dirci | dirco | | . – | dir | 5 | dio | 12 | - 1 | know | • | | | djano | | dja | 17 | | 177 | (6-0) | | | reverse | | | | fanri | fanve | | | fav | 17 | (fae)
kui | 16 | _ | * elation | | | | kanci | kunci | | | kuc | 1 | | 7 | - | word | | | | purda | | | | pur | 10
2 | pua | 15 | _ | set | | | | setci | |
 4.5 | set | 2 | sei | 15 | _ | picture | | | | tcure | | tcu | 17 | | 16 | 700 | 1 | _ | bad | | | | zavlo | | | | zav | 10 | zao | ' | _ | bau | | | | | | | | pas/k | 10/2 | pao | 3 | _ | past | | | 16 | bisti | pasko | | | pas/k
viz/k | 8/2 | via | 6 | - | see | | | | kanvi | vizka | | | | 9 | muo | 7 | _ | move | | | | muvdo | | | 16 | muv | 7 | шао | • | _ | space | | | | spasi | | spa | 10 | tam | 7 | tau | 9 | _ | weapon | | | | tarmu | | | | vet | 4 | vei | 12 | _ | happen | | | | vetci | | | | 460 | • | *** | | _ | • • | | | 1. | -1 | alaai | cle | 15 | | | | | _ | without | | | 15 | claso
ctifu | clesi | cti | 15 | | | | | _ | stuff | | | | | | CUI | כו | gun | 10 | gui | 5 | _ | country | | | | gunti
kamla | | | | kam | 5 | kaa | 10 | _ | come | | | | | | mre | 15 | КСШ | | | | _ | man | | | | mrenu
prire | | pri | 15 | | | | | _ | behind | | | | sonda | | PLI | 8.0 | son | 7 | soa | 8 | - | sound i | | | | Sonua | | | | 50.1 | • | | | | | | | | | | | | | | | 424 | | 43 afs | 408 | | 18-15 | 25 wds | 6 | 8 | 128 | 20 | 149 | 15 | 131
862 | 0 1
0 3 | 43 ars
109 | 1998 | | 15+ | 63 | 12 | 22 | 648 | 50 | 488 | 37 | | 0.2% | 13% | 43% | | | 9.0% | 24% | 10 | Ď. | 7.5 |) | 8. | t . | 0.4 | 13# | קנד | We now have about 9% of the prims and 13% of all the affixes that will be assigned; and we have already covered 43% of the pool of terms. The CVCs and CCVs are of about equal importance in this group, covering 7.5 and 8.7 terms each respectively. The CCVs are still most powerful, covering 16 terms each. Again, a small coverage loss has been sustained: prakapli with its unreduced final term is only partly covered. (kai has already been given to the more powerful katli, a 25.) Note that the remaking rate at 24% is still climbing. ¹⁴ brana bra 14 - born cnire snire sni 14 - near filmo - fil 10 fio 4 - feel | | gruni
lilfa
podju | rulni | | 14 | rul
lil | 7
13 | rui | 7 | -
1 f | rule
legal | | |-------|-------------------------|-------------------|------------|-----|--------------|-----------|------------|---------|-----------------|-------------------|--------| | | tsero | proju | pro
tse | 14 | | | | | -
-
- | produce
error | | | 13 | berti
bivdu | | | | ber
biv/d | 3
6/1 | bei
biu | 10
6 | - | carry
behave | | | | frena
jaglo | | fre | 13 | jag | 8 | jao | 5 | - | front angle | | | | kinci
norsa | notbi | | | kin
not | 12
13 | kii | 1 | - | companion other | | | | numcu
titci
turka | | tci | 13 | num | 8 | nuu | 5 | - | number
eat | | | | vedji | mutce | | | tur
muc/t | 9
10/2 | tua
mue | 1 | - | work
much/very | | | 14-13 |
17 wds |
5 |
6 | 82 | 13 |
102 | 9 |
43 | 0 1 | 28 afs 2 |
27 | | 13+ | 80
11 % | 17
29 % | 28
13. | 730 | _ | 590 | _ | 905 | 0.4% | 137 222 | | The CVCs are now more powerful, at 7.8 terms each, than the CVVs at 4.8 terms. The CCVs are still most powerful at 13.7 terms each. This pattern will be maintained, with minor variations, through the rest of the list. Again a CPX with an unreduced final term (blililfa) is encountered. (lia more fruitfully belongs to clina, a 12.) Total coverage-loss now stands at 4 terms, all final ones. The rate of loss--now 0.4%--is still a mere trickle. This pattern, too, will be maintained until we near the end of the list. The remaking rate has now peaked at 29%. But this is one of two peaks in the remaking rate; the other and broader one will not come until the 8's. | 12 | clina | | | | 2.4- | 0 | | | | | | |-------|--------|-------|-----|--------|------|------|--------|-------|------------|----------|------| | 12 | cutri | | | | lin | 8 | lia | 4 | - | line | | | | | | | | cut | 9 | cui | 3 | - | water | | | | denli | | | | del | 3 | dei | 9 | - | day | | | | fumna | | | | fum | 2 | fua | 10 | - | woman | | | | gacpi | hapci | | | hap | 10 | hai | 2 | - | happy | | | | girsa | gresa | gre | 12 | | | | | - | grease | | | | landi | | | | lan | 5 | lai | 7 | - | land | | | | merli | | | | mel | 3 | mei | 9 | _ | measure | | | | morto | | | | mor | 12 | | | _ | dead | | | | penso | | | | pen | 6 | peo | 6 | _ | think | | | | satci | | | | sac | 11 | _ | | 1 f | start | | | | skiti | begco | | | beg | 2 | beo | 10 | _ | request | | | | tradu | | tra | 12 | _ | | | | - | true | | | | | | | | | | 9 | | _ | | | | 11 | forli | fotli | | | fot | 10 | foi | 1 | _ | strong | | | | merji | | | | mer | 10 | | • | 1 f | marry | | | | poldi | | | | | 10/1 | | | _ `- | nation | | | | prase | | pra | 11 | , | | | | _ | continue | • | | - 6 | puntu | | | | pun | 5 | puu | 6 | _ | pain(ful | | | | setfa | | | | pun | , | sea | 11 | _ | put | . / | | | socli | | | | sol | 11 | Sea | • • | _ | social | | | | veslo | | | | 501 | • • | veo | 11 | - | vessel | | | | | | | | | | 160 | • • • | - | vesser | | | 12-11 | 21 wds | 4 | 3 |
35 | 17 | 118 |
13 | 89 | 0 2 | 33 afs | 242 | | 11+ | 101 | 21 | | 765 | 80 | 708 | 59 | 994 | 0 6 | 170 | 2467 | | | 14% | 19% | 11. | | 6.9 | | 6.8 | | 0.8% | 21% | 53% | | | | | | | | | | | ۷.0 | س ا ∟ | 720 | We've passed the 50%-coverage mark with just 14% of the prims and 21% of the affixes. The locally increased utility of the CVVs will prove to be temporary. There is a continuing trickle of coverage losses, but both cases still involve only final terms. (sai will do more work for santi, a 4; and mei is already working strongly for merli, a 12.) These are, of course, the "tastier" of the two kinds of coverage losses, non-final ones always involving the not-very-tasty hyphens. | 10
10+ | 20 wds
121
17% | 4
25
20% | 5
36
8. |
43
808
6 | 16
96
6. | 105
813
6 | 13
72 1
3•7 | 48
1042
7 | 0 4
0 10
2.0% | 34 afs
204
25% | 196
2663
57 % | | | | | | | | | | | |-----------|----------------------|-------------------------------------|---------------|--------------------|----------------|-----------------|-------------------|-----------------|---------------------|----------------------|----------------------------|-------|-------|---------|--------|---|--|---|------|-----|---| | ransas w | zvoto | | zvo | 10 | | | | | - | out | | | | | | | | | | | | | | vatli | | | | val | 8 | vai | 2 | - | value | | | | | | | | | | | | | | togri | | | | tog | 2 | toi | 8 | - | agree | | | | | | | | | | | | | | tcale | langa | | | lag | 9 | laa | 1 | - | long | | | | | | | | | | | | | | stise | natli nimla rando fando sanse stadi | rando | rando | | Tando | rando | | | _ | _ | sti | 10 | | | | | - | stop | | | | | stadi | | | | | | | sta | 10 | | | | | - | stage | | | | | | | | | | | | | | | | Tando | Idiido | Tando | Tando | Tando | Tando | 1411-10 | 2411-4 | • | | | | sas | 6 | | | | | | | fad | 7 | fao | 3 | - | end | | | | | | | | | | | | | | natli | | | | | nim | 8 | nia | 2 | - | animal | | | | | | | | | | | | | | | | | nat | 3 | nai | 7 | - | night | | | | | | | | | | | | | | namci | PO. 11 | | | nam | 7 | • | | 3f | name | | | | | | | | | | | | | | lilpa | porli | | | por | 6 | poi | 4 | (= | power(fu | 1) | | | | | | | | | | | | | larte | | MI G | | lar | 5 | lae | 5 | - | art | | | | | | | | | | | | | | kraku | | kra | 10 | | | | | | cry | | | | | | | | | | | | | | korti | | 114 | J | kor | 9 | | | 1 f | body | | | | | | | | | | | | | | farfu | detra | fra | 3 | far | 7 | dça | • | ÷ | father | | | | | | | | | | | | | | danci
detri | detra | | | der | 3 | dea | 7 | _ | daughter | <u>I</u> | | | | | | | | | | | | | corta | | | | cor
dan | 8 | dai | 2 | _ | plan | | | | | | | | | | | | | 10 | canse | | | | can | 9 | cae
coa | 1 | _ | short | | | | | | | | | | | | | | | | | | | 8 | | 2 | | chance | | | | | | | | | | | | The trickle of coverage losses has increased. But these latest 4 are still of the same type: like the others so far, they leave only unreduced final terms. This is surely the most tolerable kind of coverage loss, being hyphen-free. | 9 | bleci | blicu | bli | 9 | | | | | - | possible | |---|-------|-------|-----|---|-------|-----|-----|---|----|----------------------| | | condu | hanco | | | han | 9 | | | - | hand | | | djori | | djo | 9 | | | | | - | member | | | duvra | duvri | _ | | duv | 2 | dui | 7 | - | discover | | | grada | | gra | 9 | | | | | - | great | | | kapni | | _ | | kap | 7 | | | 2f | open | | | klesi | | kle | 9 | | | | | - | class | | | kolro | | | | kol | 4 | koo | 5 | - | color | | | korji | | | | koj | 2 | koi | 7 | - | command(er) | | | kukra | | | | kuk | 9 | | | - | fast | | | matci | | | | | | mai | 9 | - | machine | | | matma | | | | mat/m | 5/2 | maa | 2 | - | mother | | | midju | | | | mid/j | 8/1 | | | - | middle | | | nedza | | | | ned | 5 | nea | 4 | - | next | | | papre | | pre | 9 | | | | | - | paper | | | pento | penta | | | pet | 7 | pea | 2 | - | <pre>point(ed)</pre> | | | plici | pleci | ple | 9 | | | | | - | play | | | | | | | | | | | | | | | renro
resfu
sonta
sundi | sunho | | | 6) | ren
res/f
sun
sud | 4
6/3
3
2 | red
suc | 0 6 | | - | thi
dre
sor
ser | 1 | | |---------|----------------------------------|------------------------|---------|----------------|----|----------------------------|--------------------|---------------|------------|-------------|---------------|--------------------------|-----|--------------------| | 9
9+ | 21 wds
142
20% | 6
31
29 % | 6
42 | 54
862
9 | | 17
113
4.6 | 79
892 | 10
82
5 | 54
1096 | 0
0
1 | 2
12
1% | 33
237
29% | afs | 187
2850
61% | The loss-rate has diminished a little; and it is still of the same favorable type. The remaking rate is 29% again. It will go no higher. We are evidently in the region of closely packed words. Moreover, the words now
being remade are often of secondary importance. They were the ones that were preferentially remade when competing with a more powerful word; djadi with djano for dja, for example. | 8 | bilti | | | | bil | 4 | bii | 4 | - | beautifu | 11 | |-----|--------|-------|-----|----------|-------|-----|-------|----|------------|----------|------| | | bleka | | ble | 8 | | | | | - | watch | | | | botcu | botsu | | | bot | 3 | bou | 5 | _ | boat | | | | brize | | bri | 8 | | _ | | | - | wind | | | | djadi | djudi | dju | 8 | | | | | _ | judge | | | | dorja | | _ | | dor | 8 | | | _ | war | | | | driki | | dri | 8 | | | | | _ | remember | | | | dumni | humni | | | hum/n | 4/3 | | | 1 f | human | | | | femdi | | | | fem | 8 | | | - | female | | | | kliri | | kli | 8 | | | | | - | clear | | | | mandi | mendi | | | men | 8 | | | _ | male | | | | marka | | mra | 6 | mar | 2 | | | _ | mark | | | | nadzo | | | | naz | 7 | nao | 1 | - | now | | | | prali | | | | ral | 7 | | | 1 f | profit | | | | puctu | pucto | | | puc | 1 | puo | 7 | - | push | | | | resta | zbuma | zbu | 8 | | | | | _ | explode | | | | ridji | lidji | | | lid | 8 | | | - | religiou | ıs | | | rodja | | | | roj | 7 | | | 1 f | grow | | | | rutma | | | | rut | 2 | rua | 6 | - | route | | | | saldi | | | | sal | 8 | | | - | solid | | | | samto | | | | sam | 3 | sao | 5 | - | same | | | | smike | | smi | 8 | | | | | - | secret | | | | sordi | | sro | 8 | | | | | _ | store | | | | tisra | | | | | | tia | 8 | - | select | | | | | | | | | | | | | | | | 8: | 24 wds | 7 | 9 | 70 | 16 | 83 | . 7 | 36 | 0 3 | 32 afs | 189 | | 8+: | 166 | 38 | | 932 | 129 9 | 75 | 89 11 | 32 | 0 15 | 269 | 3039 | | | 24% | 29% | 7.8 | , | 5.2 | | 5.1 | | 1.6% | 33% | 65% | Now with just one-quarter of the prims employed we have gained nearly two-thirds of the coverage. There is still the same sort of loss-trickle. Remaking is holding at its peak rate of 29%. | 7 | bilca
bitsa
bloda | | blo | 7 | bic
bit | 7
3 | bia | Ц | | military
between
hit | |---|-------------------------|-------|-----|---|------------|--------|-----|---|---|----------------------------| | | clivu | cluva | clu | 7 | | | | | _ | love |